

The University of Texas

Adaptation and Validation of the SAGAT Tool for SRNAs

UTHealth

Jane and Robert Cizik

Deniz Dishman, PhD, DNAP, MSN, CRNA, CHSE

The University of Texas Health Science Center at Houston -Cizik School of Nursing

The University of Texas

School of Nursing

Background and Significance

- Endsley's "Theory of Situation Awareness" (Figure 1):
- "...perception of elements of the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future." 1
- Critical cognitive construct and precursor of decision-making.^{1,2,3}
- High-level situation awareness (SA): interpret key information and make accurate projections from a continuously changing situation: necessary for good decision-making.^{1,3,4,5}
- Correlated with experience and training, accentuating importance of simulation in nurse anesthesia education.^{1,3,}

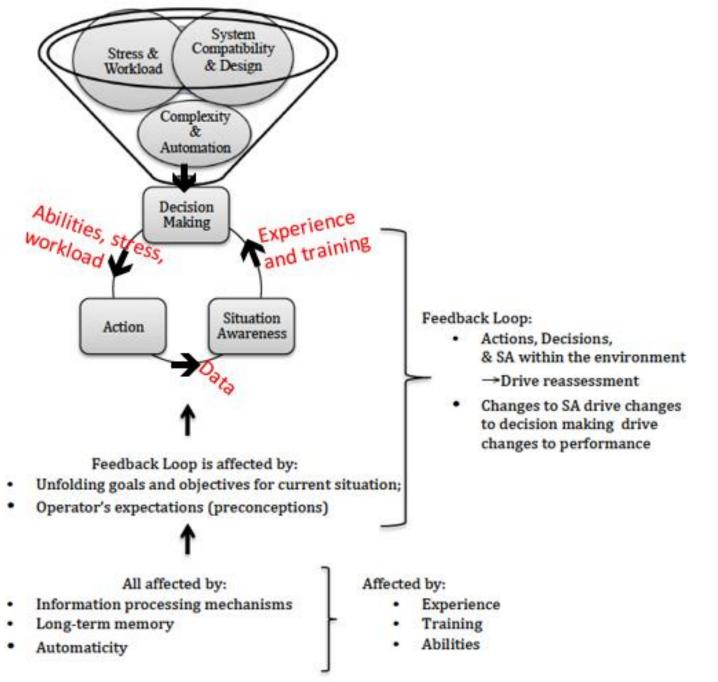


Figure 1. Depiction of feedback system described in Endsley's "Theory of Situation Awareness" (Endsley, 1995).

- SAGAT "Situation Awareness Global Assessment Technique" 4:
 - Direct and objective measurement tool.^{3,4,6}
 - "Freeze-Probe" technique.^{3,4,6,7}
- Most recently adapted and validated in obstetrics, trauma, emergency medicine, nursing.⁶
- To date, there is no direct and objective assessment tool to quantify SRNAs' SA.

Funding

\$13,648.45 General Research Grant

Methodology

- UTH Science Houston IRB approved
- Exploratory sequential mixed methods design (Figure 2)

Sample Selection

Purposive Sampling: CRNA, Nurse Anesthesia Educators

Phase I	Phase II	
7 Subjects	 49 Subjects 	

Nurse anesthesia program
 large, urban university
 Southwestern United States

• Nurse anesthesia programs

 across the United States

Data Collection and Methods Phase I Phase II Phase III Qualitative Quantitative GDTA by Survey for Delphi Item Analysis Generation Analysis methods Relevancy Triangulation and Integration

Figure 2. Exploratory Sequential Mixed Methods Design. QUAL > quan

- Goal Directed Task Analysis (GDTA)⁴ [Figure 3]:
 - 7 content experts using e-Delphi methods:
 - 3 rounds with verbatim feedback of responses
 - 70% consensus minimum threshold

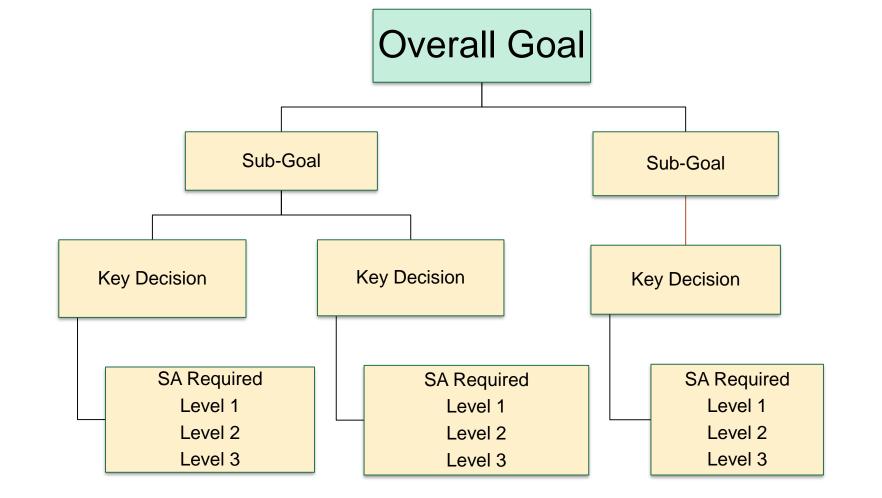


Figure 3: Goal Directed Task Analysis (GDTA) as recommended by Endsley. Data for depiction adapted from M. Wright et al, 2004.

Results and Data Analysis

- "Induction of General Anesthesia with Oral ETT Placement":
 3 sub-goals and 58 SA requirements identified:
 - 71-100% Consensus

Sub-Goals	SA Level 1	SA Level 2	SA Level 3
Hemodynamic Stability	4	3	3
Ensure Resp/Ventilation	11	11	13
Induce Anesthesia	1	5	7

- 39 items generated by content analysis.
- 40 subjects ranked items for relevancy to simulation scenario.
- 21 items isolated for SAGAT inventory item pool.

Relevancy Rankings (Mean)	Item Content Validity Indices (I-CVI)	Scale Content Validity Indices (S-CVI/AVE)
2.0 - 2.93	0.74 - 1.0* 2/39 I-CVI < 0.83**	0.92***
21 items mean rankings > or = 2.5	*6/39 items ranked by 39/40 subjects **Excellent Validity = 0.83	***Excellent validity = 0.90

Discussion and Conclusion

- First direct and objective SA measurement tool for SRNAs.
- Formative assessment tool for routine anesthetic concepts in addition to high risk, low occurrence events.
- Useful in assessing simulation's impact on SRNA clinical decision making and can direct didactic and clinical training experiences.
- Systematic exposure to established and effective patient management protocols in a controlled environment can improve SRNA SA and decision-making.

References

- 1. Endsley MR. Toward a theory of situation awareness in dynamic systems. Hum Factors. 1995; 37(1):32-64.
- 2. Endsley MR. Situation awareness misconceptions and misunderstandings. J Cogn Eng Decis Mak. 2015; 9(1): 4-32.
- 3. Wright MC, Taekman M, Endsley MR. Objective measures of situation awareness in a simulated medical environment. BMJ Qual Saf. 2004; 13(suppl 1): i65-i71.
- 4. Endsley MR. Measurement of situation awareness in dynamic systems. Hum Factors. 1995; 37(1): 65-84.
- 5. Wright SM, Fallacaro MD. Predictors of situation awareness in student registered nurse anesthetists. AANA J. 2011; 79(6): 485.
- 6. Gardner A, Kosemund M, Martinez J. Examining the feasibility and predictive validity of the SAGAT tool to assess situation awareness among medical trainees. Simul Healthc. 2017; 12(1): 17-21.
- 7. Stanton NA, Salmon PM, Walker GH, SALAS E, Hancock PA. State-of-the-science: situation awareness in individuals, teams, and systems. Ergonomics. 2017; 60(4): 449-466.