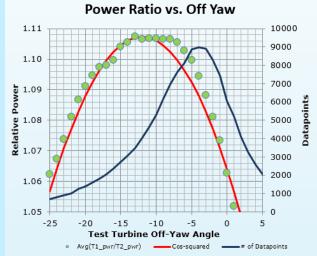

NOVEL TECHNIQUES TO DETERMINE RELIABILITY AND PERFORMANCE OF WIND TURBINES


Introduction

Owners and operators continuously seek ways to improve turbine performance. Typical inefficiencies include:

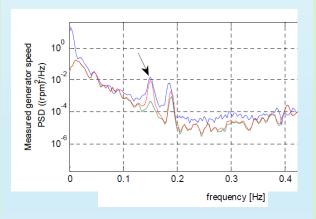
- Yaw misalignment and
- Pitch misalignment

Data resolution of 10 minutes is typical. Because turbine pitch and yaw controllers' response time is \sim 1 second, the analysis of 1 Hz data may prove to be valuable.

Methodology

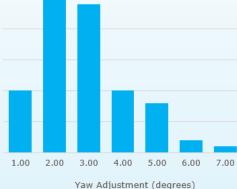
Pitch Misalignment

 Calculate and track the peak frequency for all periods and for all turbines.


Yaw Misalignment

 Calculate and track the power ratios between "side-by-side" turbines as a function of "yaw error".

Results


- A 2° pitch misalignment was detected; it was later corrected.
- This leads to a reduction in loads, but also a material ~2% annual energy production (AEP) dain.
- Yaw misalignment analysis shows that $\sim 10\%$ of turbines were $> 5^{\circ}$ yaw misalignment, which can lead to a $> \sim 1\%$ AEP gain.

Pitch **Misalignment**

GreenPowerMonitor

DNV·GL **Distribution of Yaw Misalignment**

Summary

30

25

15

¥ 10

5

S 20

- 1. Our results show that 1 Hz data can be used to detect both yaw and pitch misalignment.
- 2. $\sim 10\%$ of turbines exceeded >5° yaw misalignment which can lead to $> \sim 1\%$ AEP gains when corrected.
- 3. Using data analytics can be an extremely powerful way to monitor all turbines throughout the life of the project to ensure maximum efficiency.

Contact:

Cegeon Chan, Cegeon.Chan@dnvgl.com Sally Starnes, Sally.Starnes@dnvgl.com Josiah Chamberlain, Josiah.Chamberlain@dnvgl.com

a DNV GL company