

Rutgers University, University of Michigan, Brigham Young University, National Renewable Energy Laboratory

SUMMARY

- Computationally efficient control co-design optimization framework.
- Representative and accurate reduced-order models are derived from high-fidelity CFD and CSM tools.
- Modular and open-source for integration with other codes.
- Includes standard and real-world load cases & libraries.
- Ability to import, export and link with standard software such as MatLab, Simulink, Python scripting/API, Excel, etc.

MULTIDISCIPLINARY TEAM

Rutgers University: • Onur Bilgen (PI) • Laurent Burlion (co-PI)

University of Michigan: • Joaquim R. R. A. Martins (co-Pl)

Brigham Young University: • Andrew Ning (co-PI)

Collaborators - Rutgers: • Travis Miles, Ruo-Qian Wang

Unfunded Collaborators: • Frederik Zahle (Tech. U. of Denmark) • Erin Bachynski (NTNU)

RUTGERS

Kunnskap for en bedre verden

DTU

COMPUTATIONALLY EFFICIENT CONTROL CO-DESIGN OPTIMIZATION FRAMEWORK WITH MIXED-FIDELITY FLUID AND STRUCTURE ANALYSIS

Onur Bilgen (PI), Joaquim R. R. A. Martins, Andrew Ning, Laurent Burlion, Andy Platt, et al.

IMPACT

• Integration of traditional aeroelastic models with higher-fidelity simulation tools including unsteady Reynoldsaveraged Navier-Stokes (RANS) solvers, and 3D structural finiteelement solvers.

• High-fidelity tools provide numerically exact gradients to facilitate both efficient optimization and local linearization for control system development.

RESEARCH IASKS				
	'20		'21	
	Q1Q2	Q3 Q4	4Q5Q6	Q7Q8
TASK 1				
Framework with				
Placeholder Modules				
TASK 2				
Uncoupled Modules				
TASK 3				_
Coupled Modules				
TASK 4				
Assembly of Alpha				
Version				
Alpha Version Testing				
and Corrections				
Assembly of Beta				
Version				
TASK 5				
Technology-to-Market				
(T2M) Plan				
TASK 6				
CCT-9 with NREL FOCAL				

ACKNOWLEDGMENTS

This research is supported by the Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) Program award DE-AR0001186. The authors thank DOE ARPA-E Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and Integrated Servo-control (ATLANTIS) Program led by Dr. Mario Garcia-Sanz. Special thanks to the entire ATLANTIS Team for their support.