

LAND GRANT PROGRAM

INTRODUCTION

Direct-fed microbials (DFM) are commonly used in livest production systems to improve the metabolic and energy status animals especially during stress periods, thereby leading to impro animal productivity (Boyd et al., 2011; Broadway et al., 2015; Xu al., 2017). Several studies have suggested that the effects of DFM the metabolic and energy status of ruminants are attributed to modulation of the rumen microbiota, improved gut integrity, increased intestinal nutrient absorption (Sun et al., 2013; Qiao et 2010; Philippeau et al., 2017). The objective of this study was to a a CIL/LC-MS-based quantitative untargeted metabolomics to evaluate the effects of PROB on the plasma concentrations of carbor containing metabolites in beef steer during a 42-d receiving period.

MATERIALS AND METHODS

- Forty newly-weaned Angus crossbred steer calves (7 days postweaning; 210 ± 12 kg of body weight (BW); 180 ± 17 d of age) were stratified by BW into 4 weight blocks.
- The steers were randomly assigned (within each weight block) to of 2 treatments for a period of 42 d.
 - \blacktriangleright Diet with no additive (CON; n = 20)
 - \succ CON + 19 g of Commence Additive (**PROB**; n = 20)
- The basal diet (corn silage-based) was fed daily as a total mixed ration at 08:00 h
- CommenceTM Feed Additive (PMI, Arden Hills, MN) is a blend or S. cerevisiae, Enterococcus lactis, Bacillus subtilis, Enterococcus faecium, and L. casei, and their fermentation products.
- Body weights of steers were obtained before morning feeding on 0, 21 and 42. The quantity of feed offered to each steer was recorded daily. Diet refused (as fed) was also measured daily.
- On d 42, blood samples were taken for plasma carbonylmetabolome profiling using a chemical isotope labelling/liquid chromatograph/mass-spectrometric method.
- Rectal fecal samples were also collected approximately 4 hours after feeding on d 40 for bacterial community analysis according the Illumina 16S Metagenomic Sequencing Library protocols.

Effects of a blend of *Saccharomyces cerevisiae*-based direct-fed microbial and fermentation products on plasma carbonyl-metabolome and fecal bacterial community of beef steers James Adeyemi, Ibukun M. Ogunade, Andres Pech Cervantes, D. M. Paulus Compart College of Agriculture, Food Science, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601 Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA Land O'Lakes, Inc., Arden Hills, MN 55126

RESITTS

	Table 1 . Identified peak pairs that were affected by d	ietary supple
tock	microbials and fermentation products.	ieun jour pre-
s of	Compound	
oved	Galactose	
u et	Lactose	
I on	Glucose	
the	Fructose	
and	Isomer of fructose	
al.,	Isomer of glyceraldehyde	
pply	Glyceraldehyde	
uate	Hippuric acid	
nyl-	Phenylacetylglycine	
	5-hydroxykynurenamine	
	4-oxoglutaramate	
	2-dehydro-3-deoxy-D-glucarate	
	3-fumarylpyruvate	
	1-deoxy-D-xylulose 5-phosphate	
	Glycolaldehyde	
	Hydroxypyruvate	
	2-dehydro-3-deoxy-L-arabinonate	
1	Acetoacetate	
I	Dehydroascorbate - 2 tags	
	3-methylindolepyruvate	
	(S)-2-aceto-2-hydroxybutanoate	
	5-oxopentanoate	
	(R)-3-hydroxy-3-methyl-2-oxopentanoate	
	2-dehydropantoate	
	Isomer of (S)-2-aceto-2-hydroxybutanoate	
	Isomer of (S)-3-methyl-2-oxopentanoic acid	
of	FC: fold change relative to control.	
8	<i>P</i> -value was calculated from student's t-test.	
	Only metabolites with both fold-change ≥ 1.5 or ≤ 0.5	.67 and FDR
d [Table 2. Pearson correlations between plasma metabol	litas and part
	Table 2. I carson conclations between plasma metabo	finds and peri
		A
		r
	3-(4-hydroxyphenyl)pyruvate	0.27
	(S)-2-aceto-2-hydroxybutanoate	0.31
	5-oxopentanoate	0.43
	(R)-3-hydroxy-3-methyl-2-oxopentanoate	0.31
	2-dehydropantoate	0.31
to	Isomer of (S)-2-aceto-2-hydroxybutanoate	0.33
to	Isomer of (S)-3-methyl-2-oxopentanoic acid	0.32
	Only metabolites with correlation coefficient (r) of P -	value < 0.10
	efficiency (FE) are shown.	

ementation of a blend of S. cerevisiae-based direct-fed

Fold Change	FDD
Fold Change	FDR
2.60	< 0.01
0.46	< 0.01
2.62	< 0.01
2.31	< 0.01
2.30	< 0.01
2.01	0.01
2.01	0.01
2.13	< 0.01
1.98	0.01
2.63	< 0.01
1.82	< 0.01
1.80	< 0.01
2.58	< 0.01
2.36	< 0.01
1.63	0.01
1.60	< 0.01
0.30	< 0.01
0.62	0.01
1.74	0.01
3.72	< 0.01
2.96	< 0.01
2.30	< 0.01
2.96	< 0.01
3.28	< 0.01
3.51	< 0.01
2.19	< 0.01

 \leq 0.01 are shown.

formance indices of the beef steers.

ADG		FE		
	P-value	r	P-value	
	0.09	0.22	0.18	
	0.06	0.25	0.13	
	0.01	0.36	0.03	
	0.06	0.24	0.14	
	0.06	0.25	0.12	
	0.04	0.27	0.09	
	0.05	0.30	0.07	
C	• .1	1 •1	\cdot (ADC)	

for either average daily gain (ADG) or feed

Table 3. Relative abundance of the dominant fecal bacterial genera (> 0.01% of total sequences) that were affected by dietary supplementation of a blend of S. *cerevisiae*-based direct-fed microbials and fermentation products.

Genus (^e Prevotell *p-2534-1* Elusimic Megasph Moheiba Comamo Dorea Stenotro Blautia Acetitom *Uncultur

- 2017.

The study was funded by PMI. Additional funding support was provided by the United States Department of Agriculture's National Institute of Food and Agriculture Evans-Allen project 1008985.

RESULTS

% of total sequences)	CON	PROB	SE	P-value		
laceae UCG-003	1.91	4.15	0.48	0.03		
18B5 gut group*	0.81	0.00	0.60	0.01		
crobium	0.26	0.01	0.18	0.02		
haera	0.00	0.07	0.00	0.01		
acter	0.08	0.00	0.05	0.04		
onas	0.06	0.00	0.04	0.01		
	0.07	0.15	0.01	0.02		
phomonas	0.04	0.00	0.02	0.01		
	0.04	0.09	0.01	0.01		
<i>aculum</i> 0.01 0.04 0.00 0.01						
red bacterium belonging to the indicated family						

CONCLUSIONS

• Supplementation of PROB improved the energy status of the beef steers by increasing the relative concentrations of plasma monosaccharides such as glucose, galactose, fructose, and glyceraldehyde, as well as others (hippuric acid, phenylacetylglycine, and 5-hydroxykynurenamine) with possible health benefits.

• Supplementation of PROB altered the fecal bacterial population towards increased relative abundance of *Prevotellaceae* UCG-003 and some lactate-utilizing bacteria.

REFERENCES

• Boyd J, West JW, Bernard JK. 2011.Sun P, Wang JQ, Deng LF. 2013.

• Broadway P, Carroll J, Sanchez N. 2015.

• Xu H, Huang W, Hou Q, Kwok L, Sun Z, Ma H. 2017.

Qiao GH, Shan AS, Ma N, Ma QQ, Sun ZW. 2010.

• Philippeau C, Lettat A, Martin C, Silberberg M, Morgavi DP, Ferlay A.

ACKNOWLEDGEMENT