

Reemergence of cyathostomins species demonstrates anthelmintic resistance following drug administration

Alexa Johnson, Amy Biddle

Department of Animal and Food Sciences, University of Delaware, Newark DE, 19716, USA. alexaj@udel.edu; asbiddle@udel.edu

20

Julv

Days

70 84 a'e

September

August

Introduction

- Previous research has demonstrated anthelmintic resistance (AR), however, it is unclear if cvathostomin species are equally AR
- Current deworming strategies utilize fecal egg counts (FEC) to identify high shedder horses, therefore preserving refugia populations in low shedder horses
- · With little promise of new drug classes to target cvathostomins being introduced to the market soon, anthelmintic drugs must be administered judiciously to prevent complete AR.

Objective

The objective of this study is to determine the reemergence rate of cyathostomin species following three commercial horse dewormers

Subjects, Methods & Analysis

- · Nine horses housed at two locations were enrolled to the study and was repeated June-September 2017-2019
- · Control (no treatment), (n=34); Ivermectin (macrocyclic lactones), (n=6); Moxidectin (macrocyclic lactones) (n=8); and Strongid (tetrahydropyrimidine) (n=8)
- · Fecal samples were collected every 14d for 98d.
- · Fecal egg counts were performed with a modified McMaster technique
- 18S rRNA profiling of the V5.8 and ITS1 regions.
- · Sequences were clustered and taxonomy was assigned against a custom NCBI Blast+ database with the aligned sequences of 19 cyathostomins.
- · Horses were removed from the study if sequencing failed due to low egg recovery for more than 50% of the timepoints.
- · Data was analyzed using presence/absence methods in R studio.

Table 1: Egg Reappearance Rate												
	14 d (%)	28 d (%)	42 d (%)	56 d (%)	70 d (%)	84 d (%)	98 d (%)					
Moxidectin	100.00	100.00	98.58	96.45	93.85	83.91*	60.25					
lvermectin	100.00	96.15	81.73*	53.85	67.31	34.62	0.00					
Strongid	98.37	72.29*	49.46	7.63	-91.29	-152.69	-167.36					

Booulto

	<u>Fable 2:</u> ANOVA and		<u>Spearman</u>						
Ш						P –value	<u>C</u>	orrelati	ons
Ш	Worm Species	Con ¹	Mox ²	lve ³	Stro⁴	Treatment	Mox	(HS⁵	LS
Г	CO. coronatus	1.00 ^a	0.20 ^b	0.77 ^{ac}	0.64°	3.36e-06***	-0.48	0.30	-0.4
L	CO. labiatus	0.17 ^a	0.06 ^a	0.08 ^a	0.04 ^a	0.403			
L	CO. labratum	0.19 ^{ab}	0.24 ^{ab}	0.04 ^a	2.7e-17 ^{ab}	0.038*	0.29		
	CS. catinatum	1.00 ^a	0.56 ^a	0.83ª	0.83ª	0.066		0.30	-0.3
L	CS. tetracanthum	0.04 ^a	0.69 ^b	8.3e-17 ^a	1.4e-16 ^a	9.8e-09***			
L	CY. ashworth	1.00 ^a	0.47 ^b	0.83 ^a	0.75 ^a	0.0004***	-0.34	0.29	-0.4
L	CY. auriculatus	0.92 ^a	0.21 ^b	0.31 ^b	0.24 ^b	1.59e-06***			
L	CY. insignis	0.94 ^a	0.21°	0.52 ^b	0.46 ^{bc}	9.2e-05***	-0.31		-0.3
L	CY. leptostomus	1.00 ^a	0.27°	0.67 ^b	0.44 ^{bc}	1.13e-05***	-0.30		
	CY. nassatus	1.00 ^a	0.47 ^b	0.83 ^a	0.79 ^a	3.04e-05***	-0.35	0.30	-0.4
L	CY. radiatus	0.97 ^a	0.33 ^b	0.71 ^a	0.69 ^a	0.0004***	-0.39		-0.3
	CY. elongatus	0.75 ^a	0.22 ^b	0.31 ^b	0.38 ^{ab}	0.025*			
L	CD. bicoronatus	0.31 ^a	0.16 ^a	0.42 ^a	0.36 ^a	0.108			-0.3
	CT. calicatus	0.97ª	0.36 ^b	0.77 ^{ac}	0.611 ^{bc}	0.0005***	-0.33	0.34	-0.4
	CT. goldi	1.00 ^a	0.74 ^a	0.79 ^a	0.78 ^a	0.118		0.33	-0.4
	CT. longibursatus	1.00 ^a	0.71 ^b	0.83 ^{ab}	0.89 ^{ab}	0.025*		0.31	-0.3
Ι.	CT. minutus	0.41 ^a	0.13 ^a	0.54 ^a	0.46 ^a	0.074	-0.39		-0.3

1-Control; 2-Moxidectin; 3-Ivermectin; 4-Strongid; 5-High shedder horse (> 500epg); 6-Low shedder horse (< 200epg). Superscripts with different letters within row demonstrate P < 0.05.

Strongid

+ Control +

Vermectin 2 +

idectin 1 🔸

Conclusions

 There are species specific differences in AR responses. 5 species demonstrate AR and 9 species appear acutely sensitive to Moxidectin. Cyathostomin populations differ between high shedder and low shedder horses

ᠾ

Directions for Future Research

Identifying AR patterns at the species level will enable mechanistic molecular/physiological approaches to determine AR in cvathostomins as well as more targeted treatment approaches.

Funding Sources & Acknowledgements

This study was generously supported by Morris Animal Foundation Grant: D18EQ-802

MORRIS

