
Agriculture and Agri-Food Canada



## Genome wide DNA methylation analysis reveals role of DNA methylation in cow's ileal response to Mycobacterium avium subsp. paratuberculosis

Eveline M. Ibeagha-Awemu<sup>1</sup>, Suraj Bhattarai<sup>2</sup>, Pier-Luc Dudemaine<sup>1</sup>, Mengqi Wang<sup>1</sup>, Stephanie McKay<sup>2</sup>, Xin Zhao<sup>3</sup> and Nathalie Bissonnette<sup>1</sup> <sup>1</sup> Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada; <sup>2</sup> Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA; <sup>3</sup> Department of Animal Science, McGill university, Ste-Anne-Be-Bellevue, QC, Canada. Correspondence: Eveline.lbeagha-Awemu@Canada.ca

## INTRODUCTION

- Several investigations on disease progression of Johne's disease (JD) in dairy cows have revealed molecular mechanisms implicated in Mycobacteria avium ssp. paratuberculosis (MAP) pathogenesis<sup>[1, 2, 3]</sup>
- Epigenetic processes regulate the expression of genes and many biological processes <sup>[4]</sup>.
- Limited studies have examined the role of DNA methylation in the pathogenesis of JD.

## **OBJECTIVES**

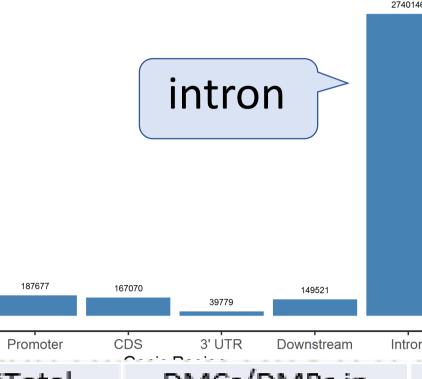
This study examined the impact of subclinical MAP infection on DNA methylation profile in the ileum of cows, the site of initial interaction between MAP and host.



- 2000 DMCs (FDR< 0.05) and 205 DMRs (*p*< 0.01) were detected.
- Majority of DMCs and DMRs are located in intergenic regions (87.2% and 57.1%) followed **by intronic regions** (12.8% and 30.7%) of genes, respectively.
- Some DMCs are located on **250** genes including genes that were previously identified to be associated with JD (Table 1).

Table 1. Some DMC between MAP+ve and MAP-ve cows and their annotated genes

|                |          |        |        |       |                |                 |               | <u> </u>         |
|----------------|----------|--------|--------|-------|----------------|-----------------|---------------|------------------|
| Chr            | Position | Strand | Pvalue | FDR   | Gene<br>Symbol | Genic<br>Region | Meth<br>Diff* | Meth<br>Status** |
| 3              | 95344349 | -      | 0.003  | 0.001 | CDKN2C         | Promoter        | 0.286         | Hyper            |
| 5              | 55720776 | -      | 0.006  | 0.012 | TSPAN31        | Promoter        | 0.256         | Hyper            |
| 13             | 54461185 | -      | 0.010  | 0.011 | SLC17A9        | Promoter        | 0.361         | Hyper            |
| 13             | 54461479 | -      | 0.003  | 0.009 | SLC17A9        | Promoter        | 0.667         | Hyper            |
| 15             | 37810679 | -      | 0.009  | 0.017 | CALCB          | Promoter        | 0.274         | Hyper            |
| 19             | 42828645 | -      | 0.007  | 0.003 | CCDC56         | Promoter        | 0.590         | Hyper            |
| 14             | 21016234 | -      | 0.007  | 0.046 | PCMTD1         | CDS             | -0.391        | Нуро             |
| 14             | 21016249 | -      | 0.006  | 0.046 | PCMTD1         | CDS             | -0.327        | Нуро             |
| 1              | 1.26E+08 | +      | 0.005  | 0.003 | SLC9A9         | Intron          | 0.361         | Hyper            |
| 1              | 1.26E+08 | +      | 0.000  | 0.013 | SLC9A9         | Intron          | 0.424         | Hyper            |
| 2              | 79554358 | -      | 0.007  | 0.027 | STAT1          | Intron          | -0.476        | Нуро             |
| 2              | 79554015 | -      | 0.006  | 0.011 | STAT1          | Intron          | -0.514        | Нуро             |
| 3              | 78014291 | -      | 0.004  | 0.049 | IL-12RB2       | Intron          | 0.645         | Hyper            |
| 3              | 78014301 | -      | 0.002  | 0.049 | IL-12RB2       | Intron          | 0.636         | Hyper            |
| 4              | 44007508 | -      | 0.006  | 0.001 | CCDC146        | Intron          | -0.292        | Нуро             |
| 6              | 1.11E+08 | +      | 0.006  | 0.035 | CD38           | Intron          | -0.164        | None             |
| 6              | 1.11E+08 | +      | 0.010  | 0.003 | CD38           | Intron          | -0.185        | None             |
| 12             | 75652512 | -      | 0.005  | 0.032 | SLC15A1        | Intron          | 0.210         | None             |
| 12             | 75652535 | -      | 0.002  | 0.021 | SLC15A1        | Intron          | 0.227         | None             |
| 13             | 61031998 | -      | 0.000  | 0.008 | DEFB122        | Intron          | -0.766        | Нуро             |
| 13             | 75284322 | -      | 0.002  | 0.046 | SLC13A3        | Intron          | -0.391        | Нуро             |
| 18             | 4586603  | -      | 0.004  | 0.025 | ADAMTS18       | Intron          | -0.692        | Нуро             |
| 18             | 55892714 | -      | 0.004  | 0.022 | SLC17A7        | Intron          | 0.358         | Hyper            |
| 20             | 40026050 | +      | 0.003  | 0.040 | ADAMTS12       | Intron          | -0.301        |                  |
| 21             | 15209172 | -      | 0.006  | 0.019 | SLCO3A1        | Intron          | 0.664         | Hyper            |
| 21             | 47145883 | -      | 0.000  | 0.028 |                | Intron          | -0.777        | Нуро             |
| 22             | 12648666 | +      | 0.006  | 0.040 | SLC25A38       | Intron          | 0.321         | Hyper            |
| * <b>-</b> 1 1 | ••••     | - 1    |        |       |                | •.•             |               |                  |


\* The difference in methylation level between positive and negative samples (Methylation level in positive samples - Methylation level in negative samples)

\*\* If MethDiff >= 0.25: Hypermethylated; If MethDiff <= -0.25: Hypomethylated; otherwise None

- DMC DMC
- disease <sup>[6]</sup>.

## **RESULTS AND DISCUSSION**

samples in different genic region



intron

|          |                    |                                                            | -      | ·····    |     | -13    |  |  |
|----------|--------------------|------------------------------------------------------------|--------|----------|-----|--------|--|--|
| Total    | DMCs/DMRs in       | DMCs/DMRs in                                               | 5' UTR | Promoter | CDS | 3' UTR |  |  |
| Cs/DMRs  | intergenic regions | genic regions                                              | 5.014  | Promoter | CDS |        |  |  |
| 2125     | 1774               | 351                                                        | 1      | 34       | 25  | 0      |  |  |
| 1180     | 112                | 88                                                         | 0      | 11       | 9   | 2      |  |  |
| hes with | hypomethylated     | Table 2 Select genes harboring DMRS and their mRNA express |        |          |     |        |  |  |

Gene

IL2RA

Differentially methylated region

Some genes with hypomethylated or hypermethylated promoters are known to impact innate immunity related to many animal diseases<sup>[1]</sup>.

#### ♦ Hypo-: HS6ST1, CCDC106, SLC17A9 and CCSMST1 • hyper-: CHRNG and RGS14

**CD38** is known to play roles in the effective containment of mycobacteria within granulomata in cows<sup>[5]</sup>.

Genetic polymorphisms in *IL-12RB2* are associated with JD and human Crohn's

Several genes of the solute carrier family, including SLC13A3, SLC15A1, SLC17A7, SLC9A9, SLC25A21, SLC25A38 and harbored DMCs. Some members of this gene family participate in pathogen clearance and have associations with JD<sup>[7]</sup>. > A total of **162** GO terms and **51** KEGG pathways were enriched for IL DMCs genes.

Most of the enriched IL BP GO terms are related to cellular processes, transport and system development while very few enriched terms (less than 1%) are related to disease and the immune process.

HIF-1 signaling pathway, a regulator of oxygen homeostasis was enriched by DMR genes (Figure 1).

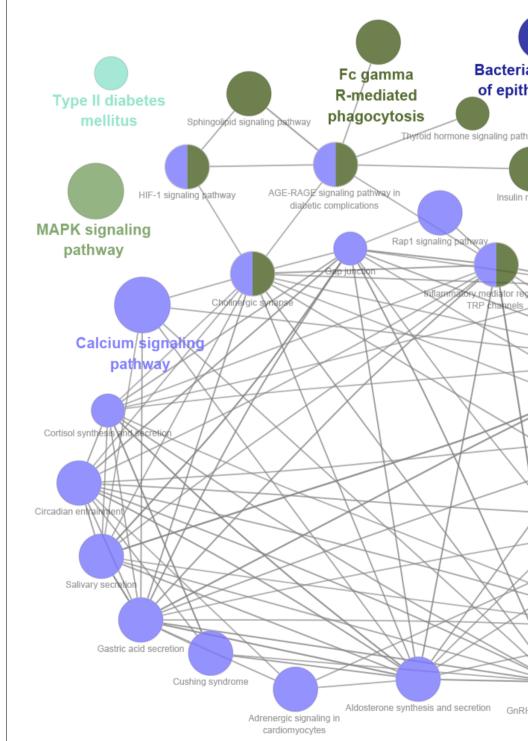
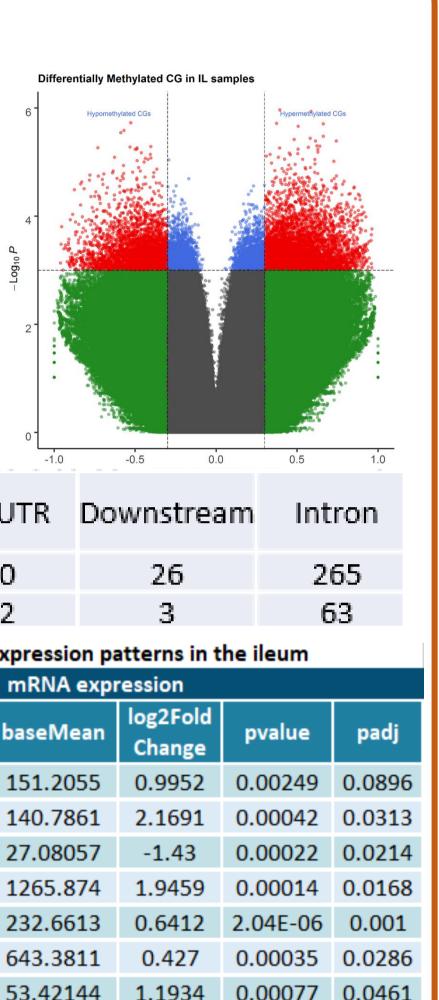




Figure 1:KEGG (FDR<0.01) enriched by DMR genes

Some enriched disease and immune pathways included bacterial invasion of epithelial cells, pathways in cancer and inflammatory mediator regulation of TRP channels, etc.



2020 ASAS-CSAS-WSASAS **Annual Meeting & Trade Show** son, Wisconsin • July 19-23, 202



0.0005 0.035

# of epithelial cells signaling system athways in cancer Axon guidance





## CONCLUSION

DNA methylation changes are involved in ileum response to MAP infection.

DNA methylation changes contribute to the regulation of host response to MAP pathogenesis and may be one of the mechanisms that MAP uses to subvert host immune responses for its survival.

### ACKNOWLEDGEMENTS

Agriculture et Agroalimentaire Canada

Agriculture and Agri-Food Canada

The authors thank the dairy farmers for allowing access to their animals and the barn staff of AAFC Sherbrooke Research and Development Centre for their assistance during the animal phase of the project. Financial support was provided by Agriculture and Agri-Food Canada.



## REFERENCES

- Ariel, et al., Frontiers in Immunology, 2020. 10, 2874.
- Arsenault et al. 2014, *Vet Res* 45, 54.
- Koets et al. 2015, Vet. Res. 46:61
- Thompson, et al., Animal Reproduction Science, 2020.
- Casey, et al., Frontiers in Immunology, 2015, 6, 23.
- Ferguson, et, al., Gastroenterology 6. research and practice 2010, 539461.
- Ruiz-Larrañaga, et al. Journal of Dairy Science, 2010, 93, 1713-1721.

