

PSVII-5: Drinking device can reduce apparent water consumption and improve device cleanliness without impairing calf performance

Maria Devant¹, Marçal Verdú², Carles Medinyà³, Joan Riera⁴, and Sonia Marti¹

¹ Producció de Remugants, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, 08140 Caldes de Montbui, España. ² Corporación Alimentaria Guissona, S.A., Guissona, Lleida, España. ³ Nutrición Animal S.L., Sallent, Barcelona, España. ⁴ Nanta S.A., Tres Cantos, Madrid, España

Introduction

- Drinking device affects: 1. water spillage
- Water intake and therefore perfomance
 Water guality

Water is a scare resource and essential nutrient

Objective

The aim of this study was to evaluate the effect of drinker device on concentrate and water intake, performance and water spillage during the winter months.

Materials and Methods

- 118 Holstein male calves (311 \pm 1.4 kg and 228 \pm 0.6 d of age) during the winter months were used
- Calves were allocated in 6 pens (3 pens/treatment; 19 to 20 calves/pen)
- Treatments:
 - 1. TRO: one water through (35 cm x 35 cm, no pressure was required)- Figure 1
 - 2. BO: one bowl with nipple facing up (bowl with a 20 cm diameter and 5-cm nipple, bite-style that was activated then animals pressed the nipple)- Figure 2
- Concentrate and water intake was recorded daily, body weight (BW), drinker device cleanliness, and water spillage (DM of bedding under the drinker) fortnightly, and water quality monthly.
- Data were analyzed using a mixed-effects model.

Figure 1. TRO Drinker

Figure 2. BO Drinker

Water spillage: TRO (70.3 \pm 1.67 %) vs BO (75.6 \pm 1.67 % DM of bedding under the drinker)

Results

Table 1. Performance, feed and water intake and carcass data of Hostein bulls with awater trough (TRO) or a bowl with a nipple facing up (BO) per

	TRO	во	SEM	т	Time	T x Time
Initial BW, kg	310	312	1.4	0.36		
Slaughter BW, kg	469	471	3.1	0.69		
ADG, kg/d	1.35	1.36	0.061	0.93	< 0.001	0.001
Water intake, L/d	26.5	25.5	0.39	0.10	0.42	0.85
Concentrate intake, kg/d as fed	7.4	7.3	0.20	0.81	< 0.001	0.91
Carcass weight, kg	245	249	1.8	0.12		
Dressing, %	52.3	52.9	0.19	0.02		

No differences in water quality parameters were observed despite cleanliness of TRO was lesser compared with BO devices (83.3 % vs 2.0% had presence of feed, respectively, P < 0.001).

Conclusions

Data of the present study are promising; the bowl nipple device reduces 4% apparent water consumption and water spillage with no impairment in animal performance and improving device cleanliness. A replicate trial will be run during summer months to contrast and complete the present study results.

FINANTIAL SUPORT: GOTA: Guia Optimització i Tractament de l'Aigua.. Entidad Financiadora: Projecte finançat per l'operació 16.01.01 (Cooperació per a la innovació) a través del Programa de desenvolupament rural de Catalunya 2014-2020)