

The influence of long-term molybdenum supplementation (in drinking water or feed) on beef calf performance through weaning. Thorndyke, M. P, O. Guimaraes, N. M Tillquist, B. V. Tangredi, J. Zervoudakis, and T. E. Engle.

ABSTRACT

Fifty-four multiparous beef cows were used to examine the molybdenum (Mo) supplemented in drinking water or feed performance. Cows were blocked by body weight (BW) and groups. Group were then randomly assigned to treatment. of: 1) Control (no supplemental Mo or Cu), 2) Control+Cu CuSO₄·5H₂O added to the basal diet), 3) Control + 500 μ g N MoNa₂O₄·2H₂O in drinking water (Mo 500-water), 4) Contr MoNa₂O₄·2H₂O in drinking water (Mo 1000-water), 5) Mo Cu/kg DM from CuSO₄·5H₂O added to the basal diet (Mo 10) Control plus 3 mg Mo/kg DM from MoNa₂O₄·2H₂O added Mo-diet). Cows were housed in dry lot pens (n=3 cows/per and fed a low-quality grass hay diet (DM basis: 6.6% CP; 0. 2.3 mg Mo/kg) and a protein supplement (30 %CP). Cows respective treatments beginning 60 d prior to breeding and treatments until all calves were weaned at approximately weights were collected on the day of birth and all calves we same day. Data were analyzed using a mixed effects model randomized block design. Birthweight, ADG, and 205d adju were similar (P > 0.05) across treatments. These data indic supplemented in the drinking water or the diet regardless additional Cu did not impact calf performance through wea

INTRODUCTION

- The majority of research investigating the imp metabolism in ruminants has been conducted supplementing varying concentrations of Mo However, certain areas within the Rocky Mou elevated Mo concentrations in livestock drink
- Limited controlled research has been conduc the impact of Mo water concentrations on bee performance.
- In 1980, Kincaid [1] conducted an experimer Calves were allowed ad libitum access to d containing targeted concentrations of 0.0, 50,000 µg of Mo/L for 21 d. There were no gain or water intake across all water treatm
- In 2017, Kistner et al [2] conducted an exper growing feedlot steers. Steers were allowed to drinking water containing targeted concentrations of 1) 0.0 μ g/L, 2) 160 μ g/L, 3) 320 μ g/L, 4) 480 μ g/L, and 5) 960 μ g/L for 131 d. There were no differences seen in performance, mineral status, water intake, or carcass characteristics.

he effect of ed on offspring nd age into one of 6 t. Treatments consisted (3 mg Cu/kg DM from Mo/L from trol + 1000 µg Mo/L of 1000-water plus 3 mg 1000-water+Cu, and 6) to the basal diet (3.0 en; 3 pens/treatment) 0.14% S, 6.2 mg Cu/kg,	Table 1. The effects of molybderItemContn=, calf per trtn=, calf per trtn=, calves bornn=, calves bornn=, calves at weaningCalf body weight (kg)birth32.2205d adjusted weaning203.3Calf ADG (kg)0.8				
received their nd remained on 7 mo. of age. Calf birth were weaned on the el for a completely justed weaning weights cate that Mo s of the inclusion of eaning.	<section-header></section-header>				
apact of Mo on Cu ed by to a basal diet. untains contain king water. cted investigating ef cattle ent utilizing calves. drinking water 1,000, 10,000, and differences in BW nents. eriment utilizing ed ad libitum access	 Cows received one treat No supplemental Mo 3 mg Cu/kg DM from (Control+Cu) Control + 500 µg Mo water (Mo 500-water Control + 1000 µg M water (Mo 1000-water Mo 1000-water plus added to the basal d Control plus 3 mg Ma to the basal diet (Mo Calves received same tr At ~7mo of age calves w receiving treatments				

Kincaid, R. L. 1980. Toxicity of Ammonium Molybdate Added to Drinking Water of Calves. J. Dairy Sci. 63:608–610.doi:10.3168/jds.S0022-0302(80)82978-X Kistner, M. J., J. J. Wagner, J. Evans, S. Chalberg, S. Jalali, K. Sellins, M. L. Kesel, T. Holt, and T.E. Engle. 2017. The effects of molybdenum water concentration on feedlot performance, tissue mineral concentrations, and carcass quality of feedlot steers. J. Anim. Sci. 95:2758-2766. doi: 10.2527/jas/2016.1333.

Colorado State University

RESULTS

	~ 1	ure in drinking wa	*	eatment	Ŭ			
	Control	Control + Cu	Mo 500-water	Mo 1000-water	Mo 1000-water +Cu	Mo-diet	SEM	P<
er trt	9.0	9.0	8.0	8.0	9.0	7.0		
s born	9.0	9.0	8.0	8.0	9.0	7.0		
s at weaning	8.0	8.0	5.0	7.0	9.0	7.0		
weight (kg)								
oirth	32.21(±7.25)	33.86(±10.90)	28.00(±4.30)	27.60(±7.12)	29.77(±8.42)	33.31(±3.47)	1.13	0.51
adjusted weaning	203.33(±22.07)	231.88(±29.37)	197.08(±13.20)	211.53(±47.77)	230.47(±18.84)	186.99(±26.22)	4.72	0.18
G (kg)	0.84(±0.97)	0.95(±0.11)	0.78(±0.08)	0.91(±0.22)	0.93(±0.07)	0.77(±0.13)	0.02	0.24
MATEF	RIALS AN	ID METH	ODS		DI	SCUSSI	ON	
supplementa g Cu/kg DM ntrol+Cu)	ater treatment ~6 al Mo or Cu (from CuSO) g Mo/L from	et 60 d prior to	d to the base	al diet	weaning weigh across treatme Chronic increa diet or water d growth or effic weaning beef Further invest determine the on beef anima	ents. ases in Mo lo not appe iency in su calves. igation is n effects of d	conce ar to a ckling eeded chronid	entration affect to
ntrol + 1000 er (Mo 1000		loNa₂O₄·2H₂	O in drinking		CC	NCLUS	ON	
ed to the bandrol plus 3 n he basal diet received sat	sal diet (Mo ng Mo/kg DM t (Mo-diet) me treatmen	u/kg DM from 1000-water - 1 from MoNa ts as dams u aned from co	⊦ Cu) ₂ O ₄ ·2H ₂ O ad	age	These data inclusion in the drinking of the inclusion impact calf per Information fro determine the body based or	water or the n of addition formance for m study is interaction	e diet nal Cu hroug useful s of Mo	regardle did not h weani to o in the

REFERENCES

05)

ns in

take

ented lless ning.