

Effects of feeding methionine during late gestation on progeny performance, feed efficiency, and carcass quality for feedlot steers in an industry applied setting

BACKGROUND

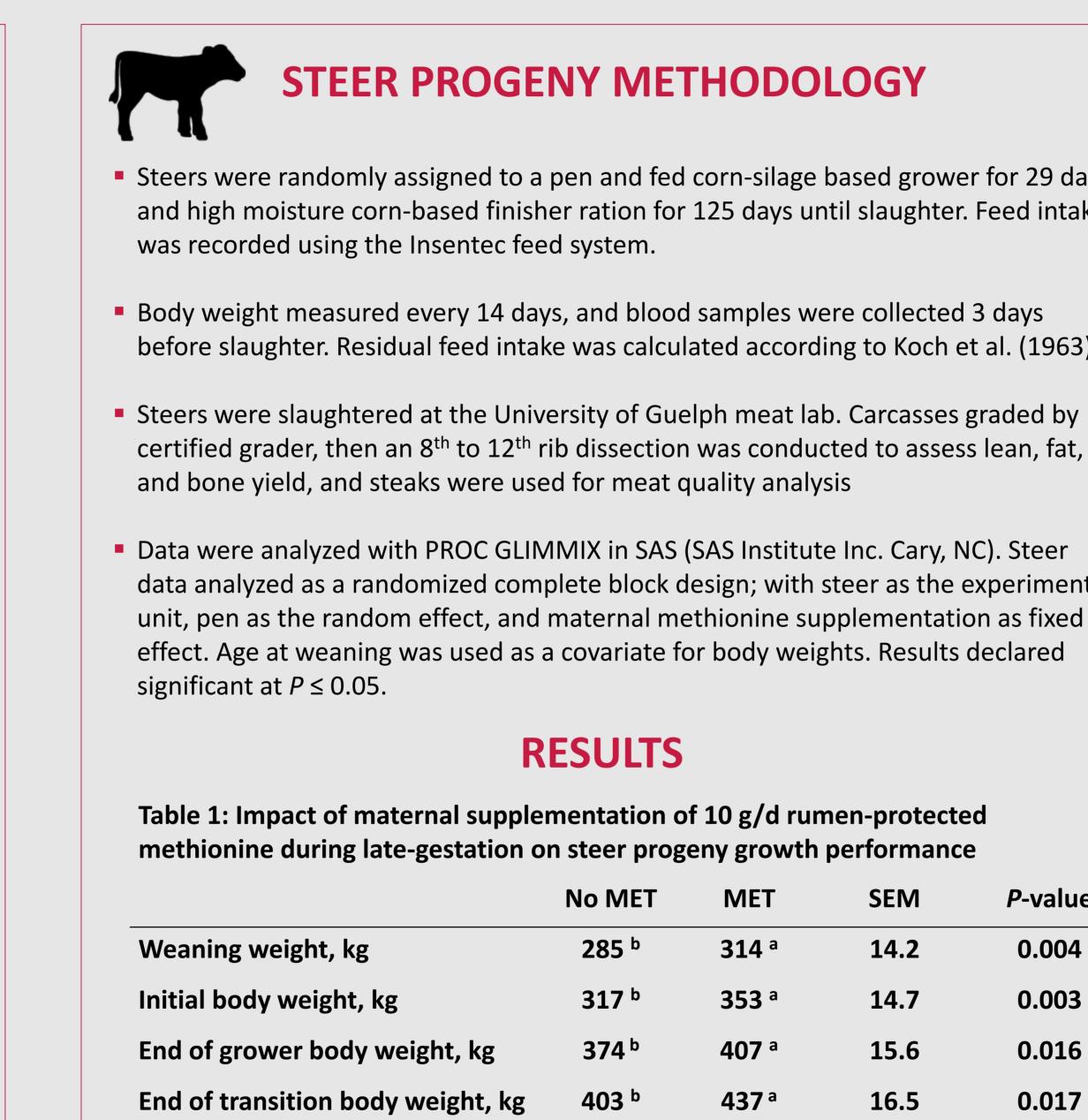
- Fetal programming is the theory that environmental factors during pregnancy can influence the developing fetus, which affects postnatal growth and development of progeny. ¹ Maternal nutrition can enhance beef calf health, growth, and carcass characteristics²
- Methionine is a limiting amino acid in beef cattle, during pregnancy cows have increased requirements to support the developing fetus³
- Few studies have considered the effects of maternal methionine supplementation on progeny performance in the feedlot
- To evaluate if controlled developmental programming is effective on farm, more highly applied research is needed to confirm control fetal programming experiments

HYPOTHESIS

It was hypothesized that offspring from cows supplemented with methionine during pregnancy in an industry applied setting would have improved growth performance and carcass quality.

OBJECTIVE

Assess how maternal methionine supplementation in an applied setting impacts steer progeny growth and feed efficiency in the feedlot, and carcass characteristics



MATERNAL METHODOLOGY

- 67 Angus cross cows randomly assigned to dietary treatments where cows received once daily in a bunk, 0.75 kg/cow/d of pellet that supplied 10 g/d of rumenprotected methionine (**MET**; Smartamine); or a similar pellet without additional methionine (No MET).
- Cows were fed over the last eight weeks of gestation, and had ad libitum access to hay from a round bale feeder and water.
- After parturition, calves were raised as a group until weaning
- After weaning, 34 (control n=16; methionine n=18) steer progeny transported to the feedlot facility to complete the trial

K. Acton¹, I. B. Mandell¹, L. Huber¹, M. A. Steele¹, and K. M. Wood¹

¹Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada

End of transition body weight, kg	403 ^b	437 ^a	16.5	
Slaughter body weight, kg	627	674	20.7	
Hot carcass weight (HCW), kg	348	377	11.6	
Days on feed, d	163	158	6	
Average daily gain (ADG), kg/d	1.97	2.11	0.090	
Dry matter intake (DMI), kg/d	11.8 ^b	12.6 ^a	0.42	
Feed to gain ratio	6.20	5.99	0.165	
Residual feed intake (RFI) ⁵	0.046	- 0.041	0.1114	

PSIX-5

	RESULTS
29 days	Steer progeny from MET cows had consistently heavier body weight find throughout the experimental period (P ≤ 0.017; Table)
d intake ys	 Average daily gain was similar, however MET progeny had higher dry r (P = 0.044; Table 1), though feed conversion ratio and residual feed in differ (P ≥ 0.36)
(1963). ed by n, fat,	 Maternal supplementation had no effect on circulating blood metabo cholesterol, glucose, insulin, NEFA, total protein, urea) (P ≥ 0.22; data
Π, Ιάι,	 Liver, pancreas or kidney weights (actual and relative to body weight a not differ with maternal methionine supplementation (P ≥ 0.06; data
oteer rimental ofixed ared	 Similarly, maternal dietary treatment did not impact carcass character grade fat, rib eye area, and lean yield, or meat quality assessment of s colour saturation, and colour descriptor (P ≥ 0.38; data not shown) for
	CONCLUSIONS
P-value 0.004 0.003	The results of this experiment suggest t industry applied setting, supplementation protected methionine during late-gestation
	dry matter intake and hody weight at we

- 0.017
- 0.104
- 0.061
- 0.130
- 0.166
- 0.044
- 0.357
- 0.573

dry matter intake and body weight at weaning and throughout the finishing period without impacting carcass quality of steer progeny in the feedlot.


REFERENCES

- Taylor et al., 2016. Prof. Anim. Sci. 32:389–399 Funston et al., 2010. J. Anim. Sci. 88:E205-E215
- Bach et al., 2000, J. Anim, Sci. 78:742–749.
- 4. NRC 2016. Nutrient requirements of beef cattle. National Academy Press, Washington, DC 5. Koch et al., 1963. J. Anim. Sci. 22(2):486-494.

Kortney Acton

acton@uoguelph.ca

from the time

matter intake ntake did not

olites (BHBA, not shown)

and HCW) did not shown)

ristics including steak pH, r steer progeny