
Maternal dietary supplementation of fatty acids during late gestation on offspring's growth, carcass characteristics and energy metabolism in sheep

Milca Rosa Velazquez^{1,2}, Juan M. Pinos Rodriguez¹, Alejandro E. Relling²

(1) Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico, (2) Department of Animal Sciences, OSU, Wooster, OH

INTRODUCTION

- Growth is an important factor that drives animal production, and it can be manipulated through maternal nutrition.
- In ruminants, previous studies suggested that maternal nutrition during late gestation with polyunsaturated fatty acids (PUFA) altered growth, energy metabolism, muscle development, and body composition of the offspring.

Maternal supply of PUFA impacts offspring's growth and physiology by increasing:

- Final body weight
- Average daily gain
- Dry matter intake
- · Plasma glucose concentration
- Carcass characteristics

(Carranza-Martin et al. 2018; Marques et al. 2017; Nickles et al. 2019)

AIM

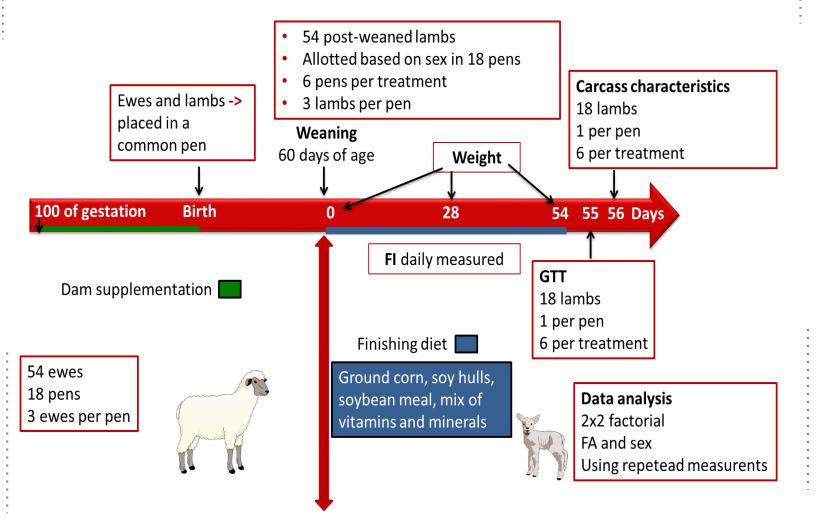
Evaluate the effect of supplementing different sources of fatty acids (FA) to ewes during late gestation on offspring growth, feed intake (FI), carcass composition, and glucose and insulin metabolism by conducting a glucose tolerance test (GTT).

HYPOTHESIS

Maternal supplementation with PUFA during late gestation increase offspring's growth, DMI, insulin sensitivity, and improve carcass characteristics.

METHODS

Fifty-four ewes (n=18/treatment) were blocked by age, and BW; and within each block randomly assigned to one of three treatments fed from day 100 gestation until lambing.


Dam treatments:

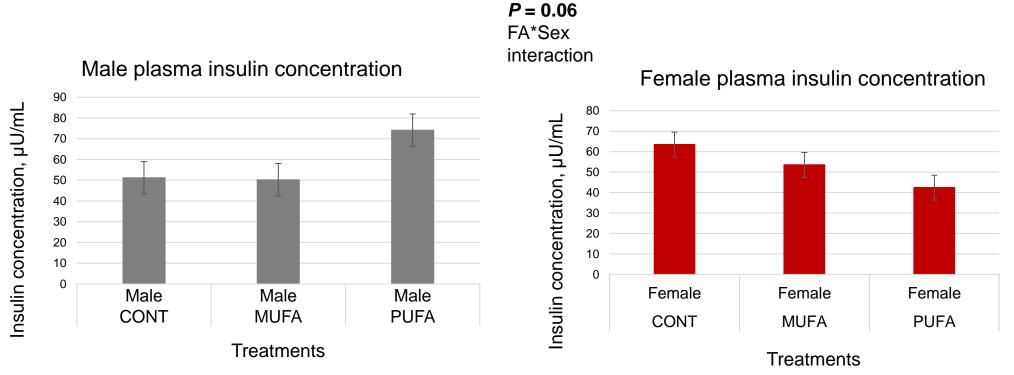
No supplementation (CONT)

Monounsaturated FA supplementation (**MUFA**) -> 1% FI (EnerGII, Virtus Nutrition)

PUFA supplementation (**PUFA**) -> 1% FI (Strata G113, Virtus Nutrition)

Study timeline

RESULTS


Growth performance

- No differences in feed intake
- There was no FA*Day, Day*Sex, or FA*Day*Sex interactions

Lamb body weight, kg										
Days after weaning	0		28		54		SEM	P value		
Sex	F	М	F	М	F	M	4.08	FA	Sex	FA*Sex
CONT	32.84	32.06	41.02	40.45	48.56	48.33		0.08	<0.01	0.08
MUFA	31.45	29.21	39.59	37.70	47.02	46.09				
PUFA	31.93	34.45	39.24	42.86	46.82	50.30				

Glucose tolerance test

No differences in glucose concentration

Carcass characteristics

	CONT		MUFA		PUFA		. CEM	P value		
Sex	Н	M	Н	M	н	M	SEM	FA	Sex	FA*Sex
HCW, kg	27.81	28.26	27.81	26.07	26.14	30.30	3.45	0.49	0.33	0.07
REA, cm²	15.55	17.10	14.71	16.19	13.29	17.16	0.17	0.47	<0.01	0.35

HCW, hot carcass weight; REA, rib eye area

CONCLUSIONS

- Maternal FA supplementation during late gestation modified growth, insulin sensitivity, and HCW in lambs.
- These changes depended on the FA unsaturation degree of the supplement and lamb sex.

BIBLIOGRAPHY

- Carranza-Martin AC, Coleman DN, Garcia LG et al.
 (2018) Prepartum fatty acid supplementation in sheep.

 III. Effect of eicosapentaenoic acid and
 docosahexaenoic acid during finishing on performance,
 hypothalamus gene expression, and muscle fatty acids composition in lambs. J Anim Sci 96, 5300-5310.
- Marques RS, Cooke RF, Rodrigues MC et al. (2017)
 Effects of supplementing calcium salts of polyunsaturated fatty acids to late-gestating beef cows
- polyunsaturated fatty acids to late-gestating beef cow
 on performance and physiological responses of the offspring. J Anim Sci 95,5347–5357
- Nickles KR, Hamer L, Coleman DN et al. (2019)
 Supplementation with eicosapentaenoic and docosahexaenoic acids in late gestation in ewes changes adipose tissue gene expression in the ewe and growth and plasma concentration of ghrelin in the offspring. J Anim Sci 97, 2631-2643.

ACKNOWLEDGEMENTS

We are truly grateful to Phyllis Dieter and the Ohio Agricultural Research and Development Center beef and sheep team for their assistance with animal care, feeding, and sampling.

