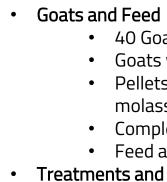


Effect of varying levels of hempseed meal supplementation on animal performance, rumen fermentation, and blood metabolites of growing meat goats

Tuskegee University, College of Veterinary Medicine, Department of Pathobiology* and College of Agriculture, Environment, and Nutrition Sciences, Department of Agricultural and Environmental Sciences[†], Tuskegee, Alabama 36088

Abstract

Hempseed meal (HSM) is a byproduct of hemp oil production and is high in crude protein, fiber, and fat making it a potential feedstuff for ruminants. The objective of this study was to evaluate the effect of HSM supplementation on growth performance, rumen fermentation and blood chemistry profile of growing meat goats. Forty castrated, Boer cross goats were randomly assigned to one of the four treatments (n=10): control, 10 %, 20 %, and 30 % HSM supplementation. Data that were collected over a period of a 60-day feeding trial were analyzed utilizing the mixed model analysis function of SYSTAT, version 13. The result revealed total live weight gain decreased with the increasing levels of HSM supplementation 10.75, 9.53, 8.48, and 7.80 kg, for 0, 10, 20, and 30 %, respectively. Average daily gain followed the same trend 0.179, 0.159, 0.141, and 0.13 kg, with a significant difference (P < 0.05) observed between the control and 30 % supplementation. Conversely, feed to gain ratio increased with the increasing levels of supplementation 9.0, 10.2, 11.9, 12.2, likewise a significant difference was observed (P < 0.05) between the control and 30 % supplementation. Acetic, propionic, butyric, valeric, iso-valeric, and iso-butyric acid concentrations as well as the total VFA concentration decreased significantly (P < 0.05) with the increasing level of supplementation. Acetic to propionic acid ratios increased with increasing level of supplementation 3.43, 4.36, 4.52, and 4.59, significant differences (P < 0.05) were observed between control-20 % and 30 % HSM group. Serum glucose concentration decreased with an increasing rate of HSM supplementation while BUN concentration increased with no significant differences. These findings provide new insights into the feeding value of HSM for meat goats, however, further research needs to be conducted to determine the optimal level of supplementation.


Introduction

For years all types of hemp (Cannabis Sativa L.) production have been illegal in most of the United States for fear of the level of THC that could potentially be stored or striking, visual similarity to marijuana. It was long believed that if producers were to grow industrial hemp, marijuana could easily be established within the industrial hemp Recent, legislative changes to the Farm Bill have resulted in a newfound interest in hemp production (Cherney and Small, 2016). Historically, hemp has been produced worldwide for centuries, as it can be grown in most climates, conditions, and provides several products: fiber and oilseeds (Johnson, 2018). Fiber is often high quality with a high strength to weight ratio, while seeds and oil are used to supply niche markets worldwide. There are two different methods for extracting the oil from ripe seeds: mechanical or solventbased. After the oil is extracted, a residual meal is left behind that is high in crude protein and low in fat compared to the whole seed (Mustafa et al., 1998). With a possibility of increased production of Industrial Hemp in the Southeastern United States, it is important to find a use for the byproduct of oil production. It has consistently been shown that this byproduct has the potential to be an ideal feedstuff for ruminants as it is high in fiber and crude protein (Mustafa et al., 1998; Hessle et al., 2008; European Food Safety Authority, 2011). HSM on average contains 30-35% crude protein on a dry matter basis (Mustafa et al., 1998; Hessle et al., 2008). Hemp seed protein has a favorable amino acid profile, resisting ruminal degradation, and has a high availability in the small intestine (Gibb et al., 2005). Additionally, 80% of the fat found in the whole seeds is polyunsaturated fatty acids which could potentially serve as an energy source while improving animal health (Mustafa et al., 1998).

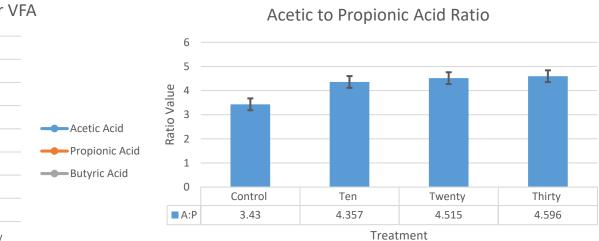
The objective of this study was to evaluate the effect of varying levels of HSM on the performance, blood metabolites, and rumen fermentation of growing meat goats.

Statistical Analysis

Frank W. Abrahamsen^{*}, Nar K. Gurung[†], Woubit Abebe^{*}, Gopal Reddy^{*}, Kim Mullenix[‡]

Auburn University, College of Agriculture, Department of Animal Sciences[‡], Auburn, Alabama 36849

- 40 Goats underwent a 60 Day feeding trial
- Goats were fed twice daily feed offered and refused was documented to determine intake • Pellets consisted of: Hempseed Meal (varying rates), corn, timothy grass hay, soybean meal, molasses, meatmaker premix
- Complete diets were pelleted
- Feed analysis was completed on composite samples by Holmes Laboratory
- Treatments and Sample Collection
 - Treatments consisted of 0% (control), 10%, 20%, and 30% hempseed meal supplementation • Blood was collected on day 60 of the feeding period and serum chemistry profile analyzed • Rumen fluid was extracted of day 60 of the feeding period and was analyzed for volatile fatty acids
 - Acetic, Propionic, Butyric, Iso-butyric, Iso-Valeric, Valeric
 - All data was analyzed utilizing the mixed model analysis function of SYSTAT, Version 13 • Significance level was set at *P≤0.05*



Results

	were balanced to be iso-nitr mpseed meal inclusion rate	-				ueu 19
ASTIC	Nutrient Analysis	Unit	Control	10%	20%	30%
	Dry Matter	%	89.06	88.6	89.1	89.86
	Crude Protein	%	19.18	19.91	19.25	20.39
	Available Protien	%	18.51	19.13	18.34	19.42
	Adjusted Protein	%	19.18	19.91	19.25	20.39
	A.D.F. Protein	%	0.67	0.78	0.91	0.97
	N.D.F. Protein	%	3.45	3.64	4.11	4.4
	Soluble Protein	%	4.1	4.24	3.96	4.89
	Protein Solubility	% %	21.38	21.3	20.57 6.21	23.98
	Ligin Acid Detergent Fiber	%	3.34	4.77 24.67	28.96	7.02 30.97
	Neutral Detergent Fibe		33.29	35.18	39.63	42.8
	NFC	%	40.64	37.8	35.38	31.9
	Crude Fat	%	3.19	3.32	4.22	4.5
	TDN	%	71.2	69.2	64.7	62.79
	NE1	Mcal/lb	0.736	0.714	0.664	0.643
	NEm	Mcal/lb	0.758	0.729	0.664	0.636
	NEg	Mcal/lb	0.481	0.456	0.397	0.372
	Ash	%	7.02	7.01	7.09	6.79
	Ligin Insoluble Ash	%	1.25	1.24	1.45	1.24
	Calcium	%	0.95	0.92	0.88	0.82
	Phosphorus	%	0.39	0.41	0.48	0.52
	Magnesium	%	0.23	0.24	0.26	0.28
	Potassium	%	1.43	1.29	1.29 0.22	1.24
	Sulfur Sodium	%	0.22	0.22	0.22	0.22
	Copper	ppm	20	15	16	22
	Manganese	ppm	64	75	82	91
	Zinc	ppm	71	67		
				0/	/4	80
olatile Fatty Aci	Table 1. Nutrien diets fed to the	ppm t compos	144 ition of the	¹⁵⁴ e respect	⁷⁴ 154 ive treat	80 137 ment
volatile fat	Table 1. Nutrien	t compos growing n neal suppl	144 ition of the neat goats lementatio	154 e respect	154 ive treat	137 ment
 With the in volatile fat A:P ratio in 	Table 1. Nutrien diets fed to the creasing level of hempseed r y acids decreased (Figure 1)	t compos growing n neal suppl evel of suj	144 ition of the neat goats lementatio oplementa	respect n the cor tion (Figu	154 ive treat icentratio	137 ment
 With the in volatile fatt A:P ratio in Total VFAS 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l	t compos growing n neal suppl evel of suj	144 ition of the neat goats lementatio oplementa	154 e respect n the cor tion (Figu ntation (F	154 ive treat icentratio	137 ment on of n
 With the involatile fath A:P ratio in Total VFAS Concesso 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing	t compos growing n neal suppl evel of suj	144 ition of the neat goats lementatio oplementa supplementa	154 e respect n the cor tion (Figu ntation (F	154 ive treat icentratio ire 2) igure 3)	137 ment on of n
 With the involatile fath A:P ratio in Total VFAS Conce 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing	t compos growing n neal suppl evel of sup ng level of	ition of the neat goats lementatio oplementa supplementa	154 e respect n the cor tion (Figu ntation (F	154 ive treat icentratio ire 2) igure 3)	137 ment on of n
 With the involatile fath A:P ratio in Total VFAS Conce 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing	t compos growing n neal suppl evel of sup ng level of	ition of the neat goats lementatio oplementa supplementa	154 e respect n the cor tion (Figu ntation (F	154 ive treat icentratio ire 2) igure 3)	137 ment on of n
 With the involatile fath A:P ratio in Total VFAS Conce 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of	ition of the neat goats lementatio oplementa supplementa	154 e respect n the cor tion (Figu ntation (F	154 ive treat icentratio ire 2) igure 3)	137 ment on of m
 With the involatile fath A:P ratio in Total VFAS Conce 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of	ition of the neat goats lementatio oplementa supplementa	154 e respect n the cor tion (Figu ntation (F	154 ive treat icentratio ire 2) igure 3)	137 ment on of n
 With the involatile fatter volatile fatter A:P ratio in Total VFAS Concert 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of	ition of the neat goats lementatio oplementa supplementa	154 e respect n the cor tion (Figu ntation (F	154 ive treat icentratio ire 2) igure 3)	137 ment on of n
 With the involatile fatt A:P ratio in Total VFAS Conce 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of	ition of the neat goats lementatio oplementa supplementa	154 e respect in the con tion (Figu ntation (F Acetic to	154 ive treat icentratio ire 2) igure 3)	137 ment on of m
 With the involatile fath A:P ratio in Total VFAS Concession C	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ing level of	ition of the neat goats lementatio	154 e respect in the cor tion (Figu ntation (F Acetic to	154 ive treat icentratio re 2) Figure 3) o Propior	137 ment on of m nic Acid
 With the involatile fatt A:P ratio in Total VFAS Conce Conce Conce Conce Conce Total VFAS 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ing level of	ition of the neat goats lementatio	154 e respect in the cor tion (Figu ntation (F Acetic to Acetic to	154 ive treat icentration re 2) Figure 3) o Propior I I Ten 4.357 Trea	137 ment on of m nic Acid
 With the involatile fatt A:P ratio in Total VFAS Conce Conce Conce Conce Conce Conce Total VFAS 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ing level of	ition of the neat goats ementatio	154 e respect in the con tion (Figu ntation (F Acetic to Acetic to 3	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of m nic Acid
 With the involatile fatt A:P ratio in Total VFAS Conce Conce Conce Control Ten 	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ing level of	ition of the neat goats lementatio	154 e respect in the con tion (Figu ntation (F Acetic to Acetic to 3	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of m hic Acid
 With the involatile fatter volatile fatter A:P ratio in Total VFAS Concession Concession Concession	Table 1. Nutrien diets fed to the e creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ing level of	ition of the neat goats lementatio	154 e respect in the con tion (Figu ntation (F Acetic to Acetic to 3	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of m hic Acid
 With the involatile fatt A:P ratio in Total VFAS Conce Conce Conce Control Ten T Gure 1. Concent 	Table 1. Nutrien diets fed to the e creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ionic Acid ric Acid	ition of the neat goats lementatio	154 e respect in the con tion (Figu ntation (F Acetic to Acetic to 3	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of m hic Acid
 With the involatile fatter volatile fatter A:P ratio in Total VFAS Concession Concession Concession	Table 1. Nutrien diets fed to the e creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ionic Acid ric Acid	ition of the neat goats lementatio	154 e respect in the con tion (Figu ntation (F Acetic to Acetic to 3	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of m nic Acid
 With the involatile fatter volatile fatter A:P ratio in Total VFAS Concession Concession Concession	Table 1. Nutrien diets fed to the e creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ionic Acid ric Acid	ition of the neat goats lementatio	154 e respect in the con tion (Figu ntation (F Acetic to Acetic to 3	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of n nic Acid
 With the involatile fatter volatile fatter A:P ratio in Total VFAS Concession Concession Concession	Table 1. Nutrien diets fed to the e creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ionic Acid ric Acid	ition of the neat goats lementatio	154 e respect in the con tion (Figu ntation (F Acetic to Acetic to 3	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of n nic Acid
 With the involatile fatter volatile fatter A:P ratio in Total VFAS Concession Concession Concession Control Ten Total Concernent 	Table 1. Nutrien diets fed to the e creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ionic Acid ric Acid al VFAs, m	ition of the neat goats lementatio	154 e respect in the con tion (Figu ntation (Figu Acetic to Acetic to 3 A:P ration nclusion	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of n nic Acid
 With the involatile fatter volatile fatter A:P ratio in Total VFAS Concession Concession Concession	Table 1. Nutrien diets fed to the creasing level of hempseed r cy acids decreased (Figure 1) creased with the increasing l decreased with the increasing entration of Major VFA	t compos growing n neal suppl evel of sup ng level of ionic Acid ric Acid	144 ition of the neat goats lementatio oplementa supplement 6 5 4 3 2 1 0 Conti A:P 3.4 Figure 2. at the con M	154 e respect in the con tion (Figu ntation (F Acetic to Acetic to 3	154 ive treat icentration (re 2) Figure 3) O Propior I I Ten 4.357 Trea	137 ment on of n nic Acid

9% (Table 1.)

najor

tive treatments eeding period

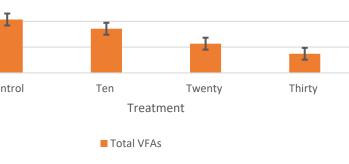


Figure 3. Total volatile fatty acids produced at the conclusion of the 60 day feeding period

Results cont.

- Serum glucose and BUN concentration
- Glucose concentration followed and inconsistent trend • BUN concentration followed a more consistent trend with only a decrease between the control and 10% treatment
- Animal Performance
- Final gain decreased with the increasing level of supplementation
- Final ADG also decreased with the increasing level of supplementation
- Feed: Gain increased with the increasing level of supplementation

Parameter:	Treatment								
Serum Chemistry:	Control	Ten	Twenty	Thirty	SEM				
Glucose, mg/dL	73.3	55.4	63.2	62.64	7.825				
BUN, mg/dL	24.9	20.6	26	29.20 [‡]	2.707				
Animal Performance:	-	-	-	-	-				
Final Gain, kg	10.75	9.525	8.482	7.802^{\dagger}	0.955				
Final ADG, kg	0.179	0.159	0.141	0.130 [†]	0.016				
Feed: Gain	9.002	10.179	11.855	12.173	0.997				
Superscripts in rows: †-	significar	ntly differ	ent from c	ontrol; ‡-s	significantly				
different from ten percent treatment									
Table 2. Serum glucose, BUN concentration, final gain, and									
final ADG for the 60 day feeding period									

Conclusions

- Hempseed meal is relatively high in crude protein, fat, and fiber and could potentially be a great feedstuff for ruminants
- 30% treatment consumed less feed and consequently had less volatile fatty acids with a higher A:P ratio
- Final Gain and ADG decreased with the increasing level of supplementation
- Feed: gain increased with the increasing level of supplementation
- supplementation
- In order to determine the maximum, appropriate inclusion rate, more work must be completed with varying rates of hempseed meal supplementation

Acknowledgements

• Tuskegee University, College of Veterinary Medicine, Department of Pathobiology • USDA/NIFA; George Washington Carver Agricultural Experiment Station of Tuskegee University, College of Agriculture, Environment, and Nutrition Sciences

References

Cherney, J., and E. Small. 2016. Industrial Hemp in North America: Production, Politics and Potential. Agronomy 6(4):1-24. doi: 10.3390/agronomy6040058

European Food Safety Authority. 2011. Scientific opinion on the safety of hemp (*Cannabis genus*) for use in animal feed No. 9, Parma, Italy Gibb, D. J., M. A. Shah, P. S. Mir, and T. A. McAllister. 2005. Effect of full-fat hemp seed on performance and tissue fatty acids of feedlot cattle. Canadian Journal of Animal Science

Hessle, A., M. Eriksson, E. Nadeau, T. Turner, and B. Johansson. 2008. Cold-pressed hempseed cake as a protein feed for growing cattle Acta Agriculture Scandinavica 58:136-145. Johnson, R. 2018. Hemp as an agricultural commodity Congressional Research Service 7

Mustafa, A. F., J. J. Mckinnon, and D. A. Christensen. 1998. The nutritive value of hemp meal for ruminants Canadian Journal of Animal Science 91-95. Sinning, D. (2020). Industrial Hemp 101. http://www.https://cannaproductnews.com/article/industrial-hemp-101/.

• It appears that animal performance and rumen fermentation maybe sacrificed with the increasing level of