Evaluation of different biochar sources added at two inclusion levels in a grass hay-based University diet on dry matter disappearance and ruminal fermentation parameters in vitro Manitoba UNIVERSITY OF

G.F. Mengistu¹, T.A. McAllister², K.H. Ominski¹, G.O. Ribeiro Jr³, E.K. Okine⁴, A.M. Saleem^{2,5}, and E.J. McGeough¹

University of Lethbridge ¹Dept of Animal Science, University of Manitoba, 12 Dafoe Road, Winnipeg, R3T 2N2, Canada;²Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South Lethbridge, Alberta, T1J 4B1, Canada; ³Dept of Animal and Poultry Science, University of Saskatchewan, 51 Campus Dr, Saskatoon, Saskatchewan, S7N 5A8, Canada; ⁴Office of Vice President Research, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada;⁵Animal and Poultry Production Dept, Faculty of Agriculture, South Valley University, Qena 83523, Egypt

Background

- Enteric CH₄ represents 6% of global anthropogenic GHG emissions, and losses of up to 6-12% of gross energy intake in ruminants (Beauchemin et al. 2020)
- Biochar, a carbon-rich biogenic biomass arising from pyrolysis may offer potential to mitigate CH₄. However biochar effects differ with source and there is scarcity of data on optimal inclusion levels
- The study evaluated the impact of adding biochar at two inclusion levels to a grass hay-based diet on total gas and CH₄ production, feed disappearance, and other fermentation parameters

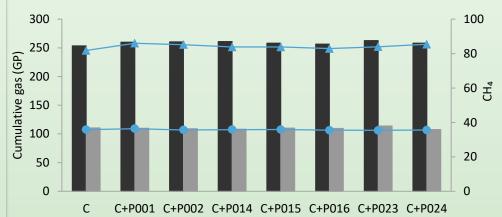
Methodology

Experimental design and treatments

- Treatments: control (C: grass hay only), and hay with one of 7 biochar products at 2 inclusion levels (2.25%; 4.5% of DM), arranged in a RCBD
- Biochar products:
 - Coconut-based: P001 and P014
 - Pine-based: P002, P015, P016, P023 and P024

In vitro incubation and measurements

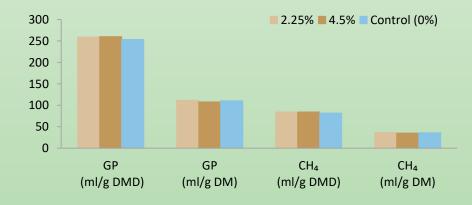
- •0.5g grass hay weighed into ANKOM bags and incubated in a 120 ml serum bottles for 48 hr using rumen fluid:buffer (1:2, v/v) (Menke et al. 1979)
- Gas pressure was recorded at 3, 6, 9, 12, 18, 24, 36 and 48h and samples obtained to determine cumulative gas (GP) and CH₄ production
- Other measurements: DM disappearance (DMD), VFA, NH₂-N and pH


Data analysis

Data were analysed using the PROC MIXED procedure of SAS, with the fixed effects of biochar product and inclusion level, and run and replicate within run as random effects

Results and discussion

Fig. 1 Cumulative gas and CH₄ production of control (C) and with 7 biochar products



■ Biochar did not affect GP or CH₄ relative to the control (Fig. 1)

Increased biochar inclusion level decreased (P<0.05) GP in ml/g DM</p> (Fig. 2)

Fig. 2 Cumulative gas (GP) and CH₄ production of control and biochar at 2 inclusion levels (2.25%; 4.5% of DM) averaged over biochar treatments

products at 2 inclusion levels (2.25%; 4.5% of DM)

	Treatments														
	С	C+P001		C+P002		C+P014		C+P015		C+P016		C+P023		C+P024	
Inclusion		2.25	4.5	2.25	4.5	2.25	4.5	2.25	4.5	2.25	4.5	2.25	4.5	2.25	4.5
Parameters															
DMD	0.44	0.43	0.41	0.43	0.41	0.43	0.41	0.44	0.42	0.43	0.42	0.42	0.43	0.42	0.41
Acetic	23.4	26.6	24.3	25.5	23.5	26.1	22.7	28.8	24.6	25.7	27.6	22.1	23.4	26.2	22.9
Propionic	9.2	10.2	10.9	9.8	9.4	10.0	8.3	10.3	9.7	10.0	9.9	8.8	9.3	9.4	8.6
Butyric	4.8	5.6	5.8	5.1	4.8	5.3	4.3	5.4	5.2	5.1	5.2	4.5	5.0	4.9	4.3
Total VFA	39.2	44.1	39.2	42.0	39.7	43.1	37.1	46.2	41.1	42.2	44.1	37.5	39.4	42.1	37.3
NH ₃ -N	5.24	4.95	4.97	4.48	4.94	5.31	5.30	4.77	4.69	5.01	5.15	5.47	5.13	5.57	4.31
рН	6.72	6.71	6.70	6.71	6.70	6.70	6.69	6.69	6.70	6.71	6.69	6.70	6.71	6.70	6.71

- fermentation parameters
- product and inclusion level for NH₂-N

Conclusions

Biochar product and inclusion level had little or no effect on *in vitro* DMD or fermentation; and did not mitigate CH₄ from a grass hay-based diet

References

Beauchemin, K.A., et al. 2020. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14 (Suppl. 1), S2-S16

Menke, K.H., et al. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci., 93:217-222.

Acknowledgements

Funding for this project provided by Agriculture and Agri-Food Canada Greenhouse Gas Program and Biochar was provided by CoolPlanet

Agriculture and Agri-Food Canada

Table 1. DM disappearance (DMD) coefficient, volatile fatty acids (VFA; mmol/L), ammonia nitrogen (NH₃-N; mg/dL) and pH of control (C) and with 7 biochar

DMD decreased (P=0.034) with higher biochar inclusion level

Biochar product and inclusion level did not affect VFA or other

A significant (P=0.040) interaction was observed between biochar