Correlation between L-lactate concentrations obtained using a handheld Lactate analyser and a lactate assay colorimetric kit in beef cattle

D. M. Meléndez^{*}, S. Marti[#], L. Faucitano[§], D. B. Haley[†], T. D. Schwinghamer^{*}, W. M. Nordi ^{*} and K. S. Schwartzkopf-Genswein*

*Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB Canada; #IRTA Ruminant Production Program, Caldes de Montbui, Barcelona, Spain; ${}^{\$}$ Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC Canada; [†]University of Guelph, Department of Population Medicine, Guelph, ON Canada.

Introduction

- Blood metabolites are used to assess a variety of animal conditions for veterinary diagnosis and research.
- Lactate, is the product of anaerobic glycolysis, used in animal research as an indicator of muscle damage.
- Lactate is used in transport research as an indicator of muscle fatigue.
- The concentration of these metabolites can be measured using a commercially available lab-based assay or using a handheld device developed to be more time and cost effective than the lab-based method.

Objective

 The aim of this study was to assess the correlation between L-lactate concentrations measured using a Lactate Scout+ analyzer (Lactate Scout, EFK Diagnostics, Barleben, Germany) and a lactate assay colorimetric kit (Lactate Assay Kit, Cell Biolabs, Inc., San Diego, CA, USA).

Material and Methods

- Blood samples were collected from 96 steers at 10 different sampling points: prior to and after 36 h of transport and prior to and after additional 4 h of road transportation, and on days 1, 2, 3, 6, 14 and 28 after the 4 h transport.
- Blood samples were collected into sodium fluoride tubes, for use in the colorimetric analysis, while the Lactate Scout+ analyzer strip was dipped in blood at the time of sampling.
- Statistics: Pearson's product-moment correlations were performed to determine the relationship between L-lactate concentrations obtained via the methods described for each sampling point, as well as for the average of all sampling points.

Results

The strengths and levels of statistical significance of the correlation varied over the observed time points (Table 1).

Sampling point	r	p-value
1	-0.03	0.74
2	0.37	< 0.01
3	0.61	< 0.01
4	0.59	< 0.01
5	0.37	< 0.01
6	0.64	< 0.01
7	0.75	< 0.01
8	0.28	< 0.01
9	0.69	< 0.01
10	0.64	< 0.01

Table 1. Pearson's product-moment correlation coefficient (r) of Llactate measured using Lactate Scout+ analyzer and a lactate assay at each sampling point.

The correlation for the pooled data was weak but statistically significant (r = 0.33, p < 0.001).

Conclusions

Based on these results, the Lactate Scout+ analyzer is not a suitable alternative to a lab-based assay for measuring L-lactate in transported cattle, due to variability across sampling time points, and weak correlation with the traditional enzymatic method.

Acknowledgements

Agri-Food Canada

Agriculture et Agroalimentaire Canada

