Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Effects of nutrient management and cropping strategies in a dual-crop forage production system of silage corn and perennial grass on nutritional quality and predicted milk production of dairy cattle Karen M. Koenig^{1*}, Shabtai Bittman², Carson Li³, Derek Hunt², and Karen A. Beauchemin¹

¹Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada T1J 4B1, ²Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia, Canada V0M 1A0, ³Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

Introduction

- A challenge of intensive dairy production is to match the nutrients of generated manure with crop requirements to minimize nutrient loss and optimize production and nutritional quality of farm feeds for milk production.
- The objectives of this study were to determine the effects of incrementally applied enhanced nutrient management, cropping practices, and advanced production technologies on nutrient composition and in vitro degradability of whole plant corn and perennial grass and the predicted milk production of dairy cattle.

Materials and Methods

	F1	F1 F2 F3		F4				
	Conventional	Nutrient	Cropping	Advanced				
ltem	System	management	strategies	technologies				
Corn								
Nutrients	Whole slurry broadcast + starter P fertilizer	Separated sludge, injected for P	Separated sludge, injected + spring slurry on relay crop	F3 + nitrification inhibitor (DCD)				
Cropping	Late harvest corn	Late harvest corn	Early harvest corn + relay crop	F3 + irrigation				
Grass								
Nutrients	Whole slurry broadcast	Separated liquid, band spreading	Separated liquid, band spreading	F3 + nitrification inhibitor (DCD)				
Cropping	5 cuts	5 cuts	3 cuts	F3 + irrigation				

Table 1. Farm management strategies

Results

Table 2. Nutrient composition and in vitro degradation of whole plant corn, Italian ryegrass, and perennial grass (tall fescue) harvested in spring, summer, and fall under incrementally enhanced nutrient management, cropping practices, and advanced production technologies

	F1	F2	F3	F4		
	Conventional	Nutrient	Cropping	Advanced		
ltem	system	management	strategies	technologies	<i>P</i> -value	
Whole plant corn						
CP, % of DM	5.59 ^c	5.98 ^b	6.81 ^a	7.09 ^a	< 0.001	
Starch, % of DM	32.7	32.7	32.2	30.7	0.72	
NDF, % of DM	44.7	44.3	44.0	43.7	0.91	
30-h IVNDFD, % of NDF	45.5	47.9	47.4	47.9	0.44	
Italian ryegrass						
CP, % of DM	-	-	15.6 ^a	14.7 ^b	0.033	
NDF, % of DM	-	-	46.0	45.7	0.52	
30-h IVNDFD, % of NDF	-	-	83.2 ^a	81.4 ^b	0.021	
Grass - spring harvest						
CP, % of DM	15.3 ^a	16.4 ^a	12.6 ^b	12.3 ^b	< 0.001	
NDF, % of DM	58.7 ^b	57.0 ^c	61.1 ^a	61.6 ^a	< 0.001	
30-h IVNDFD, % of NDF	63.6 ^a	64.5 ^a	49.1 ^b	47.6 ^b	< 0.001	
Grass - summer harvest ¹						
CP, % of DM	15.0 ^b	16.4 ^a	14.5 ^b	14.7 ^b	< 0.001	
NDF, % of DM	49.0 ^b	49.6 ^b	54.2 ^a	54.6 ^a	< 0.001	
30-h IVNDF, % of NDF	67.8 ^a	66.1 ^a	60.5 ^c	63.0 ^b	< 0.001	
Grass - fall harvest ¹						
CP, % of DM	17.9 ^b	19.0 ^a	18.0 ^b	17.9 ^b	0.037	
NDF, % of DM	50.1	50.1	51.3	50.6	0.12	
30-h IVNDF, % of NDF	72.1 ^a	72.4 ^a	68.0 ^b	68.7 ^b	< 0.001	
Crop production ² , kg/h	15.4 ^b	15.7 ^b	16.1 ^b	17.6 ^a	< 0.001	
Milk Production, kg/d	33.9	34.9	34.1	34.4	-	

¹For F1 and F2, data for cuts 2 and 3 were combined for the summer harvest and data for cuts 4 and 5 were combined for the fall harvest for statistical comparison with F3 and F4 where grass was cut 3 times annually. ²Based on 50:50 corn to grass land allocation.

^{a-c}Means within a row with a different superscript differ (P < 0.05)..

- Enhanced nutrient, cropping, and advanced management increased (P < 0.05) the CP concentration in corn compared to the conventional system while maintaining the starch concentration and in vitro fiber degradability.
- The advanced technologies which included a nitrification inhibitor (dicyandiamide, DCD) and irrigation reduced (P < 0.05) the CP concentration and fiber degradability of the relay crop, however, the fiber degradability remained high (> 81% of NDF).
- Decreasing the number of cuts of grass reduced (P < 0.05) the CP concentration in the spring harvest, increased (P < 0.05) the fiber concentration in spring and summer harvests, and reduced (P < 0.05) fiber degradability in all harvests.
- Crop production based on 50:50 corn to grass land allocation was either maintained or improved with enhanced management.
- Milk production predicted from the nutritional quality and representative proportions of forages in a total mixed ration using the Cornell Net Carbohydrate and Protein System was increased with enhanced management.

Conclusions

The lower forage quality of grass cut 3 times compared to 5 times annually was offset by the improved quality of the corn and relay crop and higher crop production yield under enhanced field management of the dairy farm.

