

INTRODUCTION

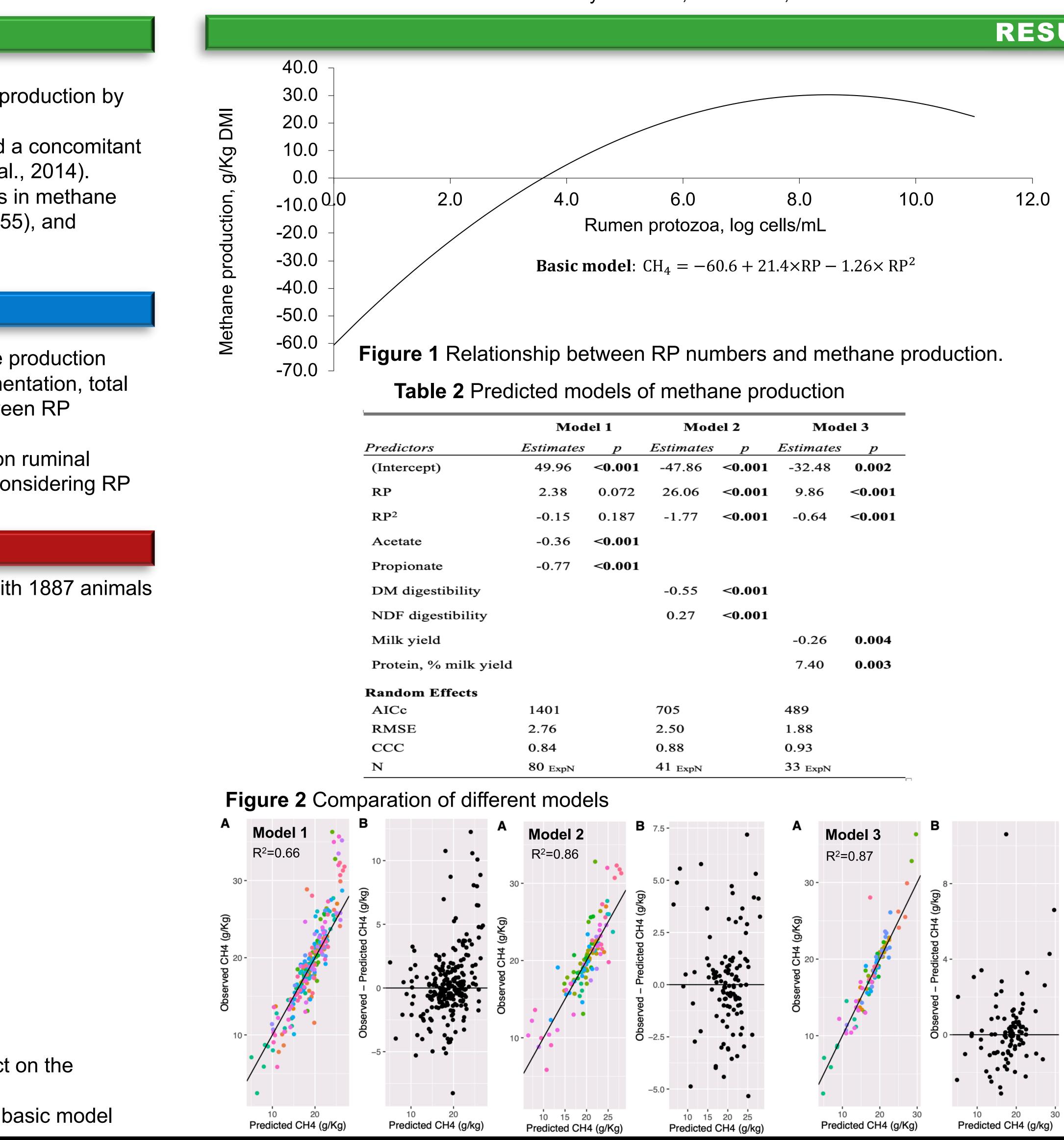
- Complete inhibition of ruminal protozoa (RP) reduces methane production by up to 11% (Newbold et al., 2015).
- □ Thirty-one percent of 76 *in vivo* experiments have demonstrated a concomitant reduction in RP numbers and methane production (Guyader et al., 2014).
- Changes in RP numbers have a linear relationship with changes in methane production with supplemental saponins (r = 0.69), tannins (r = 0.55), and essential oils (r = 0.45; Patra, 2010).

OBJECTIVES

- □ To evaluate the relationship between RP numbers and methane production □ To test the effects of dietary chemical composition, ruminal fermentation, total tract digestibility, and milk performance on the relationship between RP numbers and methane production
- □ To evaluate the predicted model of methane production based on ruminal fermentation, total tract digestibility, and milk production when considering RP numbers

MATERIALS & METHODS

- □ 67 published *in vivo* studies, 85 experiments, 256 treatments with 1887 animals (1996-2020)
- Methane production (units): g/kg DMI
- **RP** (units): log10 cells/mL
- Dataset includes:
 - ✓ Dairy cows: 51%
 - ✓ Beef steers: 22%
 - ✓ Small ruminants: 27%
- □ 70% of the studies reported a reduction in methane emission
- Treatments:
 - ✓ Defaunation
 - \checkmark Phytochemicals (tannins, saponins, or essential oils)
 - ✓ Lipids (MCFA, LCFA)
 - ✓ Probiotics/Prebiotics
 - Chemicals (iodopropane, nitrate, sulphate)
- **Basic model:** $CH_4 = \mu + \alpha \times RP + \beta \times RP^2$
- □ MIXED procedure: (Ime4 and ImerTest packages in R)
 - ✓ Random effect of experiment ID
 - \checkmark Weight = 1/(pool SEM)²
- Each factor was added to the basic model to evaluate its impact on the relationship
- □ Predicted models were generated and evaluated based on the basic model


Email Contact:

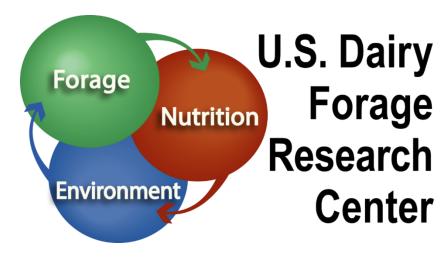
Xiaoxia.dai@usda.gov

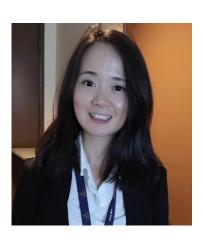
Effects of ruminal protozoa on methane emissions in ruminants – a meta-analysis

X. Dai¹, K. Kalscheur¹, P. Huhtanen², and A. Faciola³

¹U.S. Dairy Forage Research Center, USDA-ARS, Madison, WI. ²Swedish University of Agricultural Sciences, Umeå, Sweden. ³University of Florida, Gainesville, FL

RESULTS


Mod	el 2	Model 3					
Estimates	p	Estimates	p				
-47.86	<0.001	-32.48	0.002				
26.06	<0.001	9.86	<0.001				
-1.77	<0.001	-0.64	<0.001				
-0.55	<0.001						
0.27	<0.001						
		-0.26	0.004				
		7.40	0.003				
705		489					
2.50		1.88					
0.88		0.93					
41 ExpN		$33 _{\text{ExpN}}$,				


numbers and methane production

Items	Intercept				RP			RP x RP		Other factors		
	slope	Std.	<i>P</i> -value	slope	Std.	<i>P</i> -value	slope	Std.	P-Value	slope	Std.	P-value
Basic model	-60.6	5.91	<0.01	21.4	2.15	<0.01	-1.26	0.20	<0.01	-	-	-
Ruminal fermentation												
рН	-20.8	7.43	<0.01	4.88	1.31	<0.01	-0.33	0.11	<0.01	3.51	1.08	<0.01
TVFA, m <i>M</i>	-6.86	4.95	0.17	3.94	1.72	0.02	-0.09	0.17	0.60	0.07	0.01	<0.01
Acetate, %	-22.0	6.11	<0.01	5.54	1.57	<0.01	-0.34	0.13	0.01	0.31	0.08	<001
Propionate, %	21.3	4.72	<0.01	2.62	1.36	0.05	-0.17	0.12	0.14	-0.57	0.05	<0.01
Butyrate, %	-4.87	4.05	0.23	4.02	1.37	<0.01	-0.23	0.12	0.06	0.80	0.08	<0.01
Isobutyrate, %	-5.02	5.51	0.36	5.01	1.89	<0.01	-0.29	0.17	0.09	4.97	1.31	<0.01
Valerate, %	-2.10	5.32	0.69	6.91	1.66	<0.01	-0.45	0.14	<0.01	-2.56	0.76	<0.01
Isovalerate,%	-3.72	5.84	0.52	5.46	1.98	<0.01	-0.33	0.17	0.05	1.38	0.76	0.07
NH ₃ -N, m <i>M</i>	2.58	4.33	0.55	3.37	1.55	0.03	-0.10	0.15	0.51	0.07	0.06	0.28
Digestibility, %												
DM	-71.6	7.00	<0.01	32.9	2.16	<0.01	-2.23	0.20	<0.01	-0.36	0.03	<0.01
OM	-95.4	7.33	<0.01	36.3	2.20	<0.01	-2.53	0.20	<0.01	-0.15	0.05	<0.01
CP	-97.7	12.40	<0.01	40.6	3.68	<0.01	-2.99	0.34	<0.01	-0.26	0.06	<0.01
NDF	-106	5.72	<0.01	35.3	2.12	<0.01	-2.48	0.18	<0.01	0.11	0.04	0.01
Production (dairy cows)												
Milk yield, kg	-3.87	5.17	0.45	8.63	1.51	<0.01	-0.55	0.14	<0.01	-0.27	0.09	<0.01
Milk fat, %	-10.5	4.49	0.02	6.61	1.70	<0.01	-0.41	0.15	<0.01	1.26	0.48	0.01
Milk protein, %	-41.7	10.60	<0.01	9.99	1.56	<0.01	-0.66	0.14	<0.01	0.09	7.76	<0.01
Milk lactose, %	-36.0	15.60	0.02	8.94	1.57	<0.01	-0.57	0.14	<0.01	4.62	2.94	0.12
	-30.0	10.00	0.02	0.34	1.07	<u><u></u></u>	-0.07	0.14	<u>\0.01</u>	7.02	2.34	

□ There is quadratic relationship between methane production and RP numbers: $CH_4 = -60.6 + 21.4 \times RP - 1.26 \times RP^2$

- RP and RP^2 for the relationship.
- numbers.
- numbers.

Table 1 Effects of other factors on the relationship between ruminal protozoa (RP)

CONCLUSIONS

Ruminal fermentation parameters, total tract digestibility, and milk production had significant impacts on the relationship between methane production and RP numbers; however, they only changed the magnitude of intercept and slope of

Given For ruminants, the best-predicted model for methane production would be using total tract digestibility of DM and NDF as predictors when considering RP

Given For dairy cows, the best-predicted model for methane production would be using milk yield and milk protein concentration as predictors when considering RP