
Abstract ID: 886571

Changes in abundance of ruminal bacteria associated with urea level and tannin supplementation in grazing beef cattle

Iorrano A. Cidrini¹; Yury G. Salcedo²; Kênia Alves²; Laura F. Prados³; Gustavo Rezende Siqueira³; Flávio Dutra de Resende³

¹Grant # 2018/00885-6 - São Paulo Research Foundation (FAPESP)- São Paulo; ²São Paulo; ²São Paulo; ³Agência Paulista de Tecnologia dos Agronegócios (APTA), Colina, São Paulo, Brazil

- Brazilian beef production systems;
- Growing phase:
 - → Dry season low quality forage.
- Supplement composition inclusion;
- > Tannins extract;
- > Rumen microbiology.

OBJECTIVE

> The study was carried out to evaluate the effect of tannins extract (TN) associated to two levels of urea in the supplement of grazing beef cattle on ruminal bacterial abundance.

MATERIALS AND METHODS

- Four rumen cannulated Nellore steers (293 ± 5.6 kg of BW) in a Latin square 4 x 4 (4 periods of 28 d);
- > Steers grazing Urochloa brizantha cv. Marandu and were supplemented at 3 g/kg BW with soybean meal, corn, mineral mix and two levels of urea (3% or 5%) associated or not to TN (SilvaFeed-ByPro at 0.7 g/kg);
- > LU = low urea without TN; LUT = low urea plus TN; HU = high urea without TN and HUT = high urea plus TN);
- > Ruminal samples were collected 3h after supplementation;
- > V3/V4 regions of 16SrRNA gene was sequenced;
- > Quantitative Insights into Microbial Ecology (QIIME v.1.9.1) were used to filter reads and determine Operational Taxonomic Units (OTUs);
- > DESeq2 differential abundance analysis were performed using each steer on LU as control and evaluated by Kruskal-Wallis rank sum test considering statistical significance at P < 0.10.

RESULTS AND DISCUSSION

Table 1. Log2 fold change in abundance of ruminal bacteria associated with urea level and tannin supplementation in grazing beef cattle.

	Supplement				D voluo
Taxon	LU	LUT	HU	HUT	P - value
Enterorhabdus.spp	1.00 ^a	0.208±0.389 ^c	0.784±0.974 ^b	0.579±0.736bc	0.0493
Streptococcus.spp	1.00 ^a	0.608±0.676 ^b	1.352±0.084 ^a	0.478±0.632b	0.0264
Fusobacterium.spp	1.00 ^a	0.698±0.030b	0.988±0.011a	0.601±0.083b	0.0531
Synergistes.spp	1.00 ^a	0.496±0.993b	0.839±0.978 ^a	0.396±0.834 ^b	0.0485
Betaproteobacteria	1.00 ^a	0.744±0.964 ^a	0.449±0.813 ^b	0.705±0.807 ^a	0.0483

^{*}Names in bold and italics indicate class and genera level, respectively. Only taxa present in >80 % of the samples that showed significant change (P < 0.10) for at least one of the analyzed tests are shown.

CONCLUSION

> In conclusion, TN reduced the ruminal population of important ruminal pathogens bacterial.

Acknowledgements:

São Paulo Research Foundation

Process 2018/00885-6