#### PSXI-7

# Comparison of Range-Based and Irrigated Cow-Calf Systems – Grazing Season Performance

J. B. Hall\*†, J. E. Sprinkle\*†, M. Ellison\*†, S. A. Goddard†, J. Bret Taylor‡, and J. B. Glaze, Jr.\* §

\*University of Idaho, Department of Animal & Veterinary Science, Moscow, ID 83844, †University of Idaho, Nancy M. Cummings REEC, Carmen, ID 83462 ‡USDA-ARS, U.S. Sheep Experiment Station, Dubois, ID 83423, § University of Idaho, Twin Falls REC, Twin Falls, ID 83301



### Introduction

- Western U.S. beef operations generally rely on range for a portion of their grazing supply (Asem-Hiablie et al., 2017).
- However, available nutrients from rangelands may be limiting especially for spring-calving cows during mid-lactation and in the first two trimesters of gestation (Ganskopp and Bohnert, 2001).
- Irrigated pastures may offer an alternative to range-based systems, but input costs may be greater for these operations.
- Prenatal nutritional environment may affect lifetime productivity; however, it may be dependent on the severity of nutrient restriction (Funston and Summers, 2013).
- Information on extent of nutrient restriction in range vs irrigated environments is limited.

# **Objectives**

The objectives were to compare and contrast:

1) cow performance, 2) cow fertility, and 3) calf performance in a range-based (RAN) or an irrigated (IRR) system over 4 years

#### Materials and Methods

- Crossbred beef cows were assigned according to age, BW, BCS (1 emaciated to 9 - obese) and productivity to IRR or RAN.
- Cows in IRR (n = 170/yr) grazed irrigated cool season perennial pastures (May-October) then grazed crop residues (October-December).
- Cows in RAN (n = 160/yr) grazed sagebrush steppe range (May-December).
- All cows were provided hay and supplement (January-mid-March) to achieve BCS 5 by calving.
- Cows were artificially inseminated (AI). AI sires were distributed across IRR and RAN. Natural service bulls were introduced 8 to 14 d after AI.
- Cow BW and BCS were recorded at branding (April), pregnancy diagnosis, and end of grazing (December). Pregnancy was diagnosed at 60. 100. and 120 d after Al.
- Calves were weighed at birth, July, August and weaning (September).
- Data were analyzed using mixed models with main effect of system.
  Year (n = 4) was the experimental unit.

## Results

- Cow weights at branding and calf birth weights were not different (P > 0.11) between systems (Figure 1 and Table 1).
- During the grazing season, cow and calf weights were attenuated (P < 0.01) in the RAN system compared to the IRR system.
- Calves in the IRR system had greater (P < 0.001) average daily gains than calves in the RAN system
- ➢ Heifers were lighter (P < 0.03) than steers at all time points. There were no sex of calf by system interactions (P > 0.25).

Table 1. Effect of cow/calf system on calf performance.

| Item                    | Range        |               | Irrigated    |               | SE    | <i>P</i> -Value<br>System | <i>P</i> -Value<br>Sex |
|-------------------------|--------------|---------------|--------------|---------------|-------|---------------------------|------------------------|
|                         | <u>Steer</u> | <u>Heifer</u> | <u>Steer</u> | <u>Heifer</u> |       |                           |                        |
| Number of animals       | 306          | 307           | 335          | 346           |       |                           |                        |
| Birth date (Julian day) | 53.8         | 49.8          | 56.3         | 51            | 1.04  | 0.098                     | < 0.001                |
| Birth Weight (kg)       | 39.7         | 36.4          | 40.5         | 36.7          | 0.5   | 0.31                      | < 0.001                |
| Weaning Weight (kg)     | 254.1        | 242.2         | 276.7        | 261.2         | 5.7   | 0.003                     | 0.033                  |
| ADJ Weaning Weight (kg) | 266.0        | 250.1         | 294.1        | 274.2         | 4.7   | < 0.001                   | 0.002                  |
| Weaning Age (d)         | 202.6        | 207.3         | 198.2        | 203.2         | 1.39  | 0.01                      | 0.004                  |
| Ave Daily Gain (kg/d)   | 1.07         | 1.00          | 1.21         | 1.11          | 0.027 | < 0.001                   | 0.008                  |

# Conclusion/Implications

- Performance of cows and calves in the RAN system compared to the IRR system indicates that nutrients are limiting for cattle using sagebrush steppe range.
- Nutrients were limiting in RAN system during gestation and early postnatal life. Whether this level of restriction will have lifelong effects on calves remains to be determined.
- Producers using range as part of their management system may need to operate at reduced costs to offset decreased returns.

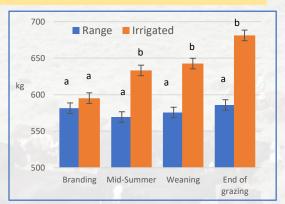



Figure 1. Effect of cow/calf system on cow weights. a,b Within weighing period effect of system (P < 0.005)

- Body condition scores mirror body weights
  - Pregnancy rates were similar (P = 0.64) for cows in the IRR and RAN systems (94.7% and 93.6%, respectively).
  - Gross returns per cow were \$60.50 greater for cows in the IRR

## References

Ase-Hiablie, S. C.A. Rotz, R. Stout and K. Fisher. 2017. Management characteristics of beef cattle production in the western United States. Prof. Anim. Scientist 33:461-471

Funston, R. N. and A.F. Summers. 2013. Epigenetics: Setting up lifetime production of beef cows by managing nutrition. Annu. Rev. Anim. Biosci. 2013. 1:339–363.

Ganskopp, D. and D. Bohnert. 2001. Nutritional dynamics of 7 northern Great Basin grasses. J. Range Manage. 54:640-647.

This work is supported by the USDA National Institute of Food and Agriculture, Hatch project IDA01609. Thanks to Zoetis, Estrotect, Select Sires and the American Simmental Association for research support.