

CHANGING LIVE

UNIVERSITY FGUELPH

INTRODUCTION

- □ Fecal egg count (FEC) is an indicative measurement for gastrointestinal (GI) parasite infection in sheep and other small ruminants
- There are different methods to measure FEC, which may provide differently distributed records
- □ It is important to account for distinct distributions between methods for purpose of genetic evaluation

OBJECTIVES

- Evaluate the differences in mean and variances between two FEC methods: the "Modified McMaster" and the "Triple Chamber McMaster"
- Estimate the genetic and phenotypic correlations between FEC records using the two different methods
- Estimate the genetic parameters for FEC and other GI parasite resistance traits (i.e. FAMACHA, body condition score, and bodyweight)

MATERIALS AND METHODS

- Fecal samples and phenotypic records for GI parasite resistance traits, including FAMACHA eye score (n = 1,048), body condition score (n = 1,054), and bodyweight (n = 1,103), were collected from a commercial sheep farm in Ontario, Canada
- □ The FEC was performed using two methods: 1) Modified McMaster (LMMR) (n = 998); and 2) Triple Chamber McMaster (LTCM) (n = 678)
- Differences in means and variances between the two method were compared using t-test and Levene's test, respectively
- Genetic and phenotypic correlations were estimated between two FEC methods treating each method as separate traits
- □ FEC records were integrated using LMMR records when available and replacing missing records with standardized LTCM records and then, log transformed (LFEC) (n=1,474)
- Genetic parameters for integrated FEC records and other GI parasites resistance traits were obtained

Difference between two fecal egg count methods and estimation of genetic parameters for gastrointestinal parasite resistance traits in sheep

M. N. Boareki^{*}, O. Willoughby^{*}, D. Kennedy[†], A. Suarez-Vega^{*}, L. R. Schaeffer^{*}, F. S. Schenkel^{*}, A. Cánovas^{*}

*University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada. ⁺Ontario Ministry of Agriculture, Food and Rural Affairs, Elora, Ontario, Canada

Table 1. Means, variances and test results for the two FEC methods

Methods Compared	T-test			Levene's test		
	Mean ± SD	t	P - value	Variance ± SD	F	P - value
LMMR	5.86 ± 0.05	1.86	< 0.0001	2.37 ± 0.11	118.98	< 0.0001
LTCM	4.34 ± 0.08			4.58 ± 0.25		

Table 2. Estimates of heritability (diagonal), genetic correlations (below diagonal), and phenotypic correlations (above diagonal)

	LFEC	FAMACHA	BCS	WT
LFEC	0.12	0.11	-0.14	-0.00
FAMACHA	0.24	0.07	-0.09	0.04
BCS	-0.03	-0.02	0.17	0.46
WT	0.22	-0.01	0.43	0.24

RESULTS

The mean and the variance were significantly different between the two FEC method (P < 0.0001), but phenotypic and genetic correlation were high (0.88 and 0.94, respectively)

Heritability estimates were 0.12, 0.07, 0.17, and 0.24, for LFEC, FAMACHA©, BCS, and the WT, respectively

Genetic correlations between fecal egg count and the other parasite resistance traits were low with FAMACHA® (0.24), BCS (-0.03), and WT (0.22)

CONCLUSIONS

□ In order to integrate FEC data from different methods (LMMR and LTCM) it is important to account for the difference in means and variance

□ The low genetic correlation between FEC and other GI parasites resistant traits suggest little benefit in using them as single indicators for FEC

mboareki@uoguelph.ca

