Influence of Akaushi Genetics on Beef Performance and Carcass Merit

MICHIGAN STATE UNIVERSITY

PSXI-18

Introduction

- Grass-fed beef has been reported as a potentially healthier alternative and contains an altered fat content and fatty acid profile when compared to grain-fed beef (Duckett et al., 2009; Harmon et al., 2020).
- Introducing beef genetics for high marbling could help grass-fed carcass more consistently grade choice.
- The study objective was to investigate the impact of beef genetics and finishing systems on beef production and carcass merit.

Material and Methods

- Sixty steers of two genetic groups, Red Angus (RA) and RA x Akaushi (AK) sired, were divided in two finishing systems (GRASS- or GRAIN-fed).
- GRAIN were fed once daily over 107 d and GRASS grazed over 80 d.
- Body weight (BW) was measured after a 12-hour fasting period at the onset and end of the trial.
- All cattle were slaughtered on the same day. To insure both treatments were at a point of compositional maturity, there was an 8 mo difference of age in the grass (26 mo age) and grain-fed cattle (18 mo age) at slaughter.
- Carcass data was collected 48 h postmortem.

in Grain and Grass-Finishing Systems

ICF Maciel^{1*}, JP Schweihofer², JI Fenton¹, J Hodbod¹, MGS McKendree¹, K Cassida¹, JE Rowntree¹ ¹Michigan State University, East Lansing, MI, USA; ²Michigan State University Extension, Port Huron, MI, USA

Results and Discussion

Table 1. Effects of breed composition and finishing system on animal performance and carcass merit of beef cattle

	System		Breed		0514	P-value		
item	GRASS	GRAIN	RA	AK	SEINI	System	Breed	S*B
Initial weight (kg)	439.1	469.7	453.6	455.3	5.40	0.016	0.823	0.530
Final weight (kg)	548.8	611.	580.7	579.2	6.83	0.003	0.876	0.791
Total gain (kg)	90.1	141.3	116.4	115.0	6.55	0.005	0.715	0.327
ADG¹ (kg/d)	1.13	1.32	1.23	1.22	0.07	0.112	0.812	0.323
Slaughter Wt (kg)	533.7	585.8	559.0	560.5	6.42	0.004	0.868	0.881
HCW ² (kg)	308.0	358.4	328.6	337.8	3.91	0.0008	0.104	0.401
Carcass Yield ³ (%2)	57.7	61.2	58.7	60.2	0.23	0.0005	<0.0001	0.085
Backfat (mm)	7.2	13.6	10.3	10.4	0.53	0.001	0.935	0.061
Ribeye (cm ²)	68.9	75.7	70.2	74.4	1.22	0.017	0.020	0.595
Internal fat (%)	0.55	2.52	1.43	1.63	0.03	<0.0001	0.0007	0.004
Pre-Yield Grade	2.70	3.33	3.01	3.02	0.05	0.001	0.935	0.061
Calculated YG	2.54	3.73	3.23	3.05	0.08	0.0005	0.119	0.415
USDA YG	2.13	3.23	2.76	2.60	0.08	0.001	0.196	0.072
Marbling score ³	Choice-	Choice+	Choice-	Choice0	21.24	0.002	0.003	0.958

¹ADG = Average daily gain; ² HCW = Hot carcass weight; ² Ratio of hot carcass weight to body weight at slaughter; 3 Choice- = 400–499, Choice0 = 500–599, Choice+ = 600–699

Conclusions

- GRAIN had superior performance and carcass merit than GRASS
- AK enhanced these carcass traits to a greater degree as compared to RA.

Hay, 20% Dry Corn, 50%

		System	The G in per					
	•	HCW +16%						
	•	Ribeye area +	10%					
	•	Backfat +52%						
	•	Dressing +6%						
	•	Marbling score (621						
		Breed	The prese					
	•	Dressing +3%						
	•	Ribeye area +6%						
	•	Marbling score (548						
	n	teraction	Intern					
	•	The AK had a (2.7 vs 2.3%) i	a great n the C					
		Interr	al Fat					
3 2.5		bA						
2								
1.5								
1 0 5		aB						
0.0) —							
		RA						

different lowercase superscripts indicate with statistically significant differences for breed in a given system and uppercase superscripts indicate statistically significant differences for system in a given breed (P < 0.05).

References

- Duckett, S. K., et al. 2009. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content. Journal of animal science 87.9: 2961-2970.
- Harmon, Deidre D., et al. 2020. Warm-season annual forages in forage-finishing beef systems: II. Animal performance and carcass characteristics. *Translational Animal Science* 4.1: 400-410.

