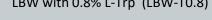
Effect of Dietary Tryptophan Supplementation on Growth, Energy Balance and Blood Metabolites in Milk-Fed Low Birth Weight Pigs

Parniyan Goodarzi, Mohammad Habibi, Julia Sutton, Cedrick N. Shili, Kennedy Roberts, Jazmin Markey, Jacob Burch-Konda and Adel Pezeshki

Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078



INTRODUCTION

- Low birth weight (LBW) is associated with reduced postnatal growth, glucose intolerance and abnormal lipid metabolism that results in development of the metabolic syndrome in adulthood.
- Dietary tryptophan (Trp) has been shown to reduce liver fat in rodents, laying hens and pigs and suppress the hyperglycemia in rodents.
- Little is known on the effect of dietary Trp on growth, lipid metabolism and glucose metabolism in LBW infants.
- <u>Objective</u>: was to investigate the effect of supplemental Trp on growth, glucose metabolism and lipid metabolism in piglet model of LBW.

METHODS

- <u>Animals</u>: LBW (<1.0 Kg) and normal birth weight (NBW; >1.0 Kg) pigs were selected from twelve sows and randomly assigned to 4 milk-based diets (n=7-8; 7 days old) for 3 weeks:
- 1) NBW with 0% L-Trp (NBW-T0)
- 2) LBW with 0% L-Trp (LBW-T0)
- 3) LBW with 0.4% L-Trp (LBW-T0.4)
- 4) LBW with 0.8% L-Trp (LBW-T0.8)

NBW LBW

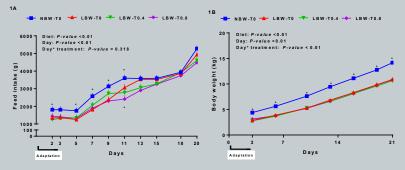
Measurements and Sample Collection:

Feed intake was measured during each meal (4-5 meal/day).

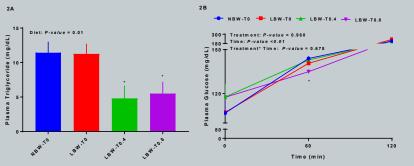
- Body weight was recorded biweekly.
- At week 3, blood samples were collected at baseline (0), 60 and 120 min after a meal test in overnight fasted animals, pigs euthanized and liver samples collected.

METHODS

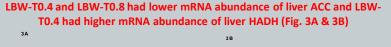
Sample Analysis:

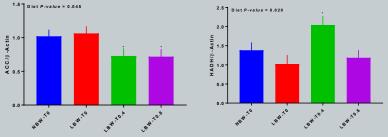

- Blood samples were analyzed for glucose and triglyceride using chemistry analyzer.
- Liver samples were analyzed for gene expression of lipid and glucose metabolism markers using qPCR.

Statistical Analysis:

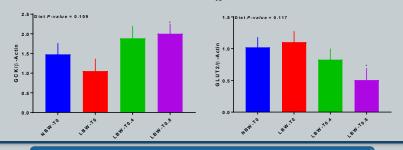

 The data were analyzed using univariate GLM with Dunnett's post-hoc test (SPSS[®]) with LBW-TO as the control.

RESULTS


LBW-T0.4 and LBW-T0.8 did not change feed intake and body weight (Fig. 1A & 1B)



LBW-T0.4 and LBW-T0.8 had lower plasma triglycerides and LBW-T0.8 had lower blood glucose at 60 min (Fig. 2A & 2B).


RESULTS

LBW-T0.8 had higher mRNA abundance of liver GCK and lower transcript of GLUT2 (Fig. 3C & 3D)

3 C

CONCLUSIONS

 Trp supplementation without affecting the animals' growth and feed intake, improved hepatic lipid and glucose metabolism through reducing lipogenesis and glucose efflux and increasing lipolysis and glycolysis.

FUNDDING

Grant no. 2018-67016-27471/project accession no. 1014892 and Hatch project accession no. 1012889 from the USDA National Institute of Food and Agriculture (NIFA)

