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Single Nucleotide Polymorphism Genotypes: Single nucleotide polymorphism
(SNP) genotypes were successfully obtained from 719 Brangus heifers (3/8
Brahman-Bos indicus × 5/8 Angus-Bos taurus) registered with International
Brangus Breeders Association using BovineSNP50 (Infinium BeadChip, Illumina,
San Diego, CA; 53,692 SNP). Genotype call rates averaged 98.1 ± 0.001% for
53,692 SNP. Genotypes were in the Illumina A/B allele format and were used to
compute a value at each locus coded as 0, 1, or 2, representing the number of B
alleles. All 3361 SNP genotypes on the first chromosome were used for this
simulation study (Peters et al., 2012)

Simulation of Additive Genetic Merits and Phenotypic Performances:
Correlated two traits with heritability of 25% (T1h2=0.25) and 50% (T2h2=0.5),
determined by 50, 100, 250, or 500 additive bi-allelic QTL was simulated using
Illumina SNP genotypes from Brangus heifers as described below.

A random sample of N = 50, 100, 250, or 500 SNP genotypes were chosen from
the observed 3361 SNP genotypes on the first chromosome to represent QTL.
Each locus had an equal probability of being included, regardless of minor allele
frequency. Each QTL was assigned a parametric substitution effect by sampling
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Additive genetic merit of each animal for two traits was obtained as the sum of
the substitution effects for each QTL allele. The simulated phenotypic
performances of each animal for two traits were obtained by adding its residual
effects to its additive genetic merits as follows:
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is a vector of population means for two traits,
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# :37;7 is a vector of the additive genetic merits obtained by summing the

genotypic values at each locus over all A loci for two traits, where the
genotypic values at locus j is the product of the 0, 1, 2 covariate (:37) for animal
i, and the substitution ;7 for that locus, and <3 is a vector of the random
residual effects (Kizilkaya et al., 2010). Data sets were generated for each of 4
QTL scenarios (QTL50, QTL100, QTL250, or QTL500) representing N = 50, 100,
250, or 500 QTL.

Use of Marker Panels for Genomic Relationship (G) Matrix: Three sets of SNP
panels were used for genomic relationship (G) matrix: only QTL genotypes
(Panel1), all SNP markers, including the QTL (Panel2), and all SNP markers,
excluding the QTL (Panel3). Following the approach of Habier et al. (2007) and

vanRaden (2008), B was defined as B =
CCD
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where C = L− N, L is

the (n×s) matrix of SNP genotype vectors for the n animals with the s SNPs code
as 0, 1, 2 and N contains the allele frequencies multiplied by 2, )3 is the allele
frequency of SNP marker i, and the sum is over all loci.

The predictive performance of GBLUP and ANN-1-10 models varied for 4-QTL
scenarios and marker panels. However, GBLUP resulted in 42% higher predictive
performance than ANN-1-10 model across QTL and Panel scenarios and the
predictive performance of GBLUP was also higher for (46%) low heritability
(T1h2=0.25) trait than (38%) high heritability (T2h2=0.5) trait. In ANN-1-10 model,
the number of neurons resulted in the varied correlations among 10-fold cross-
validation datasets. Sinecen (2019) determined that GBLUP model resulted in
higher correlation than Bayesian Regularization of Neural Network with different
number of neurons among 10-fold cross-validation datasets.

The effect of heritabilities of 25% and 50% on the predictive performance of
GBLUP and ANN-1-10 model for 4-QTL scenarios and marker panels (through B
matrix) is shown in Table 1 for testing dataset. As expected, increase in
heritability was associated with increased predictive performance of GBLUP and
ANN-1-10 models for 4-QTL scenarios and marker panels and this trend was
similar for training and testing datasets. The average percentage changes
(increases) for 4-QTL scenarios in Panels were 48% for GBLUP and 58% for ANN-
1-10 model. The effect of the number of QTL and heritability (genetic
architecture) of trait on genomic prediction in the comparison of different
genomic models were studied by Daetwyler et al. (2010) and Zhang et al. (2010)
and they found that models for genomic prediction were sensitive to the number
of QTL and heritability and decreasing heritability resulted in the decrease in the
predictive performance of genomic models. Habier et al. (2011) also determined
significant trends for the number of SNP depended on heritability, number of QTL
and the distribution of QTL effects. Zhang et al. (2019) studied the factors
affecting the accuracy of genomic selection for agricultural economic traits in
maize, cattle, and pig populations and reported that traits with higher heritability
have higher prediction accuracy.

Our results indicated that linear genome-enabled prediction (GBLUP) model
outperform neural network models with one to ten neurons based on genomic
relationship created from different marker panels. The higher differences in
predicting future phenotypes for the traits of T1h2=0.25 and T2h2=0.5 different
heritabilities in validation datasets is acknowledged.

Genomic Prediction: Genomic predictions for T1h2=0.25 and T2h2=0.5 were
carried out by bivariate Genomic Best Linear Unbiased Prediction (GBLUP) and
bivariate Feed Forward MultiLayer Perceptron ANN-1-10 neurons with G
matrix. The correlations between true genetic and predicted phenotypes from
10-fold cross validation for T1h2=0.25 and T2h2=0.5 were used to assess
predictive ability of bivariate GBLUP and ANN-1-10 neurons based on 4 QTL
scenarios with 3 Panels of SNP genotypes.

Genomic Best Linear Unbiased Prediction (GBLUP): GBLUP is the method
combining genomic information into the method of best linear unbiased
prediction by using genomic relationship matrix (G) and was introduced by
Habier et al. (2007) and VanRaden (2008).

The underlying statistical model is
O = PQ + RS + T

where O is a vector of phenotypes of animals for traits T1h2=0.25 and T2h2=0.5,
P is a matrix of 1, Q is the overall mean for traits T1h2=0.25 and T2h2=0.5, R is a
design matrix allocating phenotypes to genetic values of animals, U is a vector
of additive genetic effects of animals for T1h2=0.25 and T2h2=0.5 and
S~W(X, B⨂[) S is assumed to be multivariate normal, with B the genomic
relationship matrix and [ the additive genetic variance covariance matrix.
T~W(X, \⨂0) is a vector of the normally distributed residuals for T1h2=0.25
and T2h2=0.5, where 0 is the residual variance covariance matrix.

Artificial Neural Network (ANN) with G Matrix: Feed Forward Multilayer
Perceptron (FFMP) Artificial Neural Network (ANN) was applied with three
layers: input layer (Genomic relationships values (:) from G matrix), one
hidden layer (neuron numbers are increased 1 to 10 for finding best
performance) and output layer (the simulated traits, T1h2=0.25 and T2h2=0.5)
(Figure 1). In the analysis, FFMP-ANN parameters were tangent sigmoid
transfer function and linear transfer function for output. The train algorithm
was the scaled conjugate gradient algorithm.

FFMP-ANN-1-10 was used to predict the simulated traits, T1h2=0.25 or T2h2=0.5
of Brangus. In the training phase of FFMP-ANN-1-10, genomic relationship
values (:) were linearly combined with a vector of weights. The resulting linear
score is then transformed using an activation function to produce the output of
the single hidden neuron.

Several statistical and computational methods have been devised to predict the
genetic value of individuals from the analysis of SNPs datasets Useche et al.
(2001). There is an important statistical problem to use SNPs marker for
estimating the genetic merits because the number of SNP effects is usually much
larger than the number of observed phenotypes. However, genomic best linear
unbiased prediction (GBLUP) method was developed by replacing pedigree-based
relationship with genomic relationships estimated from SNPs marker information.
So, the dimensions of the genetic effects in the model is reduced the number of
individuals in the population, which is computationally more efficient (Misztal et
al., 2009).

Artificial neural networks (ANN) provide an interesting alternative for marker-
based genomic predictions of complex traits in animal and plant breeding. The
knowledge of the nervous system inspired the use of ANN which were developed
in the field of artificial intelligence. The idea of ANN has been used to define
statistical models in the form of neuron diagrams, as shown in Figure 1. However,
ANN are computationally costly, especially when applied to high-dimensional
genomic data, for which the number of parameters to be estimated typically
exceeds the number of available samples. Therefore, at least in animal breeding,
the use of genomic relationship have made ANN computational feasible (Gianola
et al., 2011).

This simulation study used actual SNP genotypes on the first chromosome of
Brangus beef cattle to simulate 0.50 genetically correlated two traits with
heritabilities of 0.25 and 0.50 determined either by 50, 100, 250 or 500 QTL and
then aimed to compare the accuracies of genomic prediction from bivariate
linear and artificial neural network with 1 to 10 neurons models based on B
genomic relationship matrix.

Figure 1. Feed Forward Multilayer Perceptron Artificial Neural Network (ANN)

Scenarios Neural Network GBLUP
Panel QTL r_y1,yhat1 r_y2,yhat2 r_y1,yhat1 r_y2,yhat2
QTL50 QTL50 0.425 0.562 0.432 0.642
QTL100 QTL100 0.340 0.550 0.433 0.628
QTL250 QTL250 0.279 0.474 0.419 0.645
QTL500 QTL500 0.374 0.429 0.444 0.585
QTLSNP50 QTL50 0.297 0.399 0.347 0.551
QTLSNP100 QTL100 0.271 0.420 0.378 0.565
QTLSNP250 QTL250 0.230 0.404 0.384 0.604
QTLSNP500 QTL500 0.224 0.421 0.416 0.550
SNP50 QTL50 0.189 0.375 0.341 0.543
SNP100 QTL100 0.205 0.413 0.371 0.557
SNP250 QTL250 0.232 0.388 0.377 0.591
SNP500 QTL500 0.320 0.308 0.406 0.536

Table 1. Correlations from 10-fold cross validation for traits were used to assess
predictive ability of bivariate linear (GBLUP) and artificial neural network models
based on 4 QTL scenarios with 3 Panels of SNP panels.


