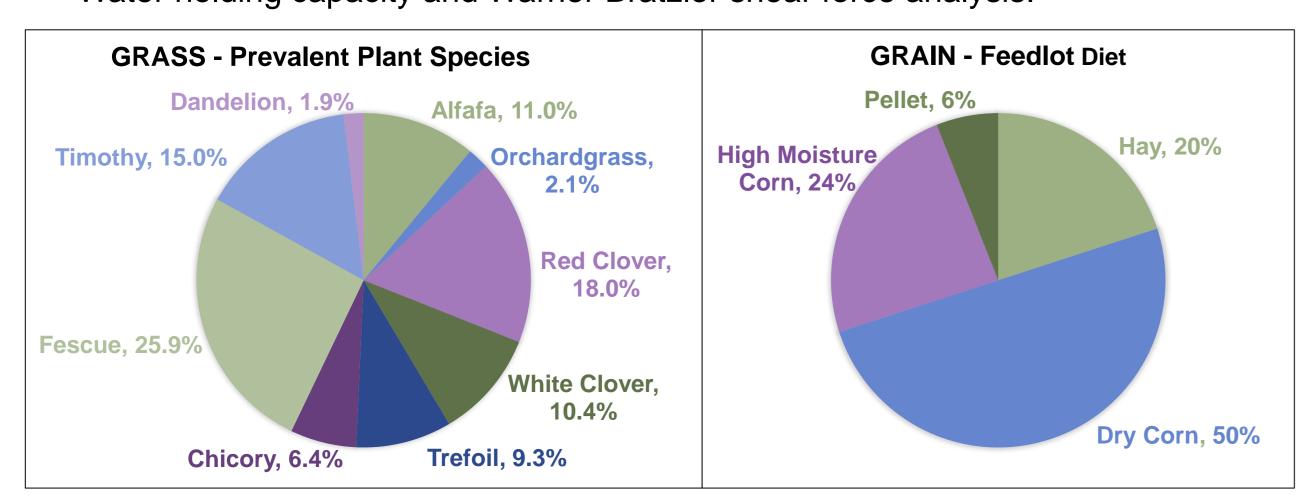


PSV-29

Influence of Akaushi Genetics on Color and Sensory Attributes of Beef from Grain and Grass-Finishing Systems

ICF Maciel^{1*}, JP Schweihofer², JI Fenton¹, J Hodbod¹, MGS McKendree¹, K Cassida¹, JE Rowntree¹


¹Michigan State University, East Lansing, MI, USA; ²Michigan State University Extension, Port Huron, MI, USA

Introduction

- Grass-fed beef has been reported as a potentially healthier alternative and contains an altered fat content and fatty acid profile when compared to grain-fed beef (Duckett et al., 2009; Harmon et al., 2020).
- Introducing beef genetics for high marbling could help the grass-fed carcass more consistently grade choice.
- The study objective was to investigate the impact of finishing systems and beef genetics on color and sensory attributes of *longissimus dorsi* steak.

-Material and Methods

- Steaks were collected from Red Angus (RA, n = 30) and RA x Akaushi (AK, n = 30) sired steers fed with a mixed-species pasture forage (GRASS) or a total mixed feedlot ration (GRAIN).
- All cattle were slaughtered on the same day. To insure both treatments were at a point of compositional maturity, there was an 8 mo difference of age in the grass (26 mo age) and grain-fed cattle (18 mo age) at slaughter.
- Rib sections (11th and 13th) were collected 48 h postmortem, cut into two 2.54 cmthick steaks, vacuum packaged and aged 14 d.
- Instrumental color analysis then steaks cooked to 71°C for sensory attributes (consumer panelists, n = 105) using a 9-point hedonic scale.
- Water holding capacity and Warner Bratzler shear force analysis.

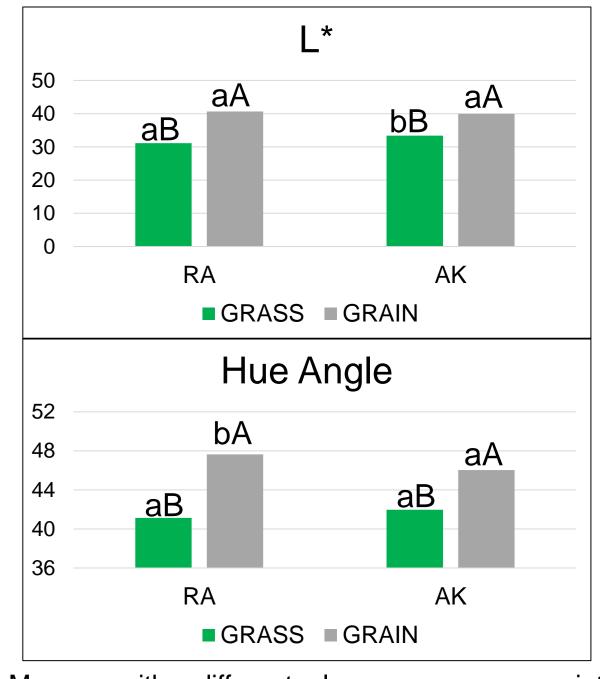
-Results and Discussion

Table 1. Effects of finishing system and breed composition on color and sensory attributes of *longissimus dorsi* steaks

Item	System		Breed		CENT	P value		
	GRASS	GRAIN	RA	AK	SEM	System	Breed	S*B
Color								
L* (lightness)	32.25	40.31	35.90	36.67	0.70	0.001	0.187	0.010
a* (redness)	19.40	16.42	17.75	18.07	0.40	0.006	0.397	0.098
b* (yellowness)	17.19	17.45	17.25	17.39	0.20	0.419	0.615	0.778
Hue angle ¹	41.56	46.83	44.39	44.00	0.61	0.003	0.375	800.0
Chroma ²	25.92	23.99	24.81	25.10	0.34	0.016	0.505	0.399
WHC ³ (%)								
Thawing loss	0.78	1.02	0.90	0.90	0.06	0.056	0.978	0.420
Cooking loss	21.12	24.18	22.79	22.51	0.74	0.043	0.697	0.990
Shear Force (kg)	4.10	3.43	3.76	3.77	0.19	0.069	0.949	0.716
Sensory ⁴								
Flavor	6.09	6.64	6.41	6.31	0.12	0.001	0.577	0.147
Juiciness	5.76	6.34	5.94	6.16	0.13	0.002	0.248	0.269
Texture	6.00	6.78	6.44	6.33	0.13	<0.0001	0.543	0.447
Acceptability	5.95	6.71	6.40	6.25	0.12	<0.0001	0.411	0.584

¹Hue angle = tan⁻¹ (b*/a*); ²Chroma = (a*²+b*²)^{1/2} (AMSA, 2012); ³Water holding capacity; ⁴Panelists assigned steak attributes using 9-point scales (1 = dislike extremely; 9 = like extremely) for flavor, juiciness, texture/firmness, and overall acceptability.

Conclusions


- Color attributes were influenced by finishing system.
- Beef finishing system had a marked impact on steaks' sensory attributes and consumer acceptability.
- The favorable results for texture and juiciness in GRAIN, which likely impacted overall acceptability, may be related to high marbling.

System

The GRASS had:

- Higher a* and Chroma values
- Thawing loss (-20%)
- Cooking loss (-13%)

- L*: AK had greater L* than RA in GRASS.
- Hue angle: RA had greater value than AK in GRAIN.

different lowercase superscripts indicate statistically significant differences for breed in a given system and uppercase superscripts statistically significant differences for system in a given breed (P < 0.05).

References

- American Meat Science Association. (2012). Meat color measurement guidelines. American Meat Science Association: Champaign, IL.
- Duckett, S. K., et al. 2009. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content. Journal of animal science 87.9: 2961-2970.
- Harmon, Deidre D., et al. 2020. Warm-season annual forages in forage-finishing beef systems: II. Animal performance and carcass characteristics. *Translational Animal Science* 4.1: 400-410.