

Supplementation of Angus crossbred steers with avian-derived polyclonal antibody preparations against the ruminal methanogen *Methanobrevibacter ruminantium* M1 does not alter in vivo methane emissions

M. E. Garcia-Ascolani¹, T. M. Schulmeister¹, F. Tarnonsky¹, F. Podversich¹, G. M. Silva¹, J. Vargas Martinez¹, M. Ruiz-Moreno¹, J. C. B. Dubeux¹, T. J. Hackmann², N. DiLorenzo¹

¹University of Florida, ²University of California Davis

Introduction

- Fiber-based cow/calf operations produce 81% of the total greenhouse gases (GHG, in CO₂e) in conventional beef production systems, with cows accounting for 78% of the total enteric CH₄ emissions (Beauchemin et al., 2010)
- In addition, enteric CH₄ production is energetically wasteful

Hypothesis

 Passive immunization against the ruminal methanogen *Methanobrevibacter ruminantium* M1 (M1) will decrease enteric CH₄ emissions of steers fed a high-fiber diet

Objectives

 Evaluation of in vivo CH₄ emissions of Angus crossbred steers consuming a high-fiber diet supplemented with PAP against M1 (PAP-M1)

Materials and Methods

- 20 Angus crossbred steers (BW = 250 ± 33 kg)
- 2 periods of 32 d each
 - 14 d adaptation to feeding regime
 - 18 d treatment
- High-fiber diet:
 - Chopped bermudagrass hay ad libitum (intake recorded using the GrowSafe System)
 - Corn gluten feed at 0.3% of BW/d (0.75 kg)
- Two treatments
 - 3 mL/d PAP-M1
 - 3 mL/d non-immunized egg product (CON)
- Enteric CH₄ emissions measured with SF₆ technique (Johnson et al., 1994)

Statistical Analysis

- Change-over design
- Data analyzed using the MIXED procedure of SAS with fixed effects of order, period and treatment and random effect of steer within order

Results: Intake and CH₄ production

	Treatment		SEM	P-value
	CON	PAP-M1	SEM	<i>r</i> -value
Intake				
DM, kg/d	5.5	5.7	0.25	0.44
% BW	2.2	2.3	0.12	0.33
CH₄ production				
CH₄, g/d	92	94	6.9	0.86
CH ₄ Y _m , % GEI	5.5	5.7	0.46	0.78
CH₄, g/kg DMI	17.0	17.6	1.43	0.78
CH₄, g/kg OMI	19.6	20.1	1.55	0.80

Conclusions

 Supplementation of Angus crossbred steers with PAP-M1 did not alter enteric CH₄ production