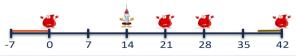


Immunological Effects of a Purified β -1,3/1,6-glucan Supplementation in Retorted Canine Diets

Zac T. Traughber, F. He, M. R. C. de Godoy

Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA 61801

Backaround


- Yeast products have immune modulatory activity through beta-glucan and mannoprotein structures within the cell wall.
- Yeast products have been shown to increase efficacy of vaccinations in livestock and aquaculture species.
- Yeast beta-glucans are recognized as pathogen-associated molecular patterns and can trigger both the innate and adaptive immune systems

Objectives

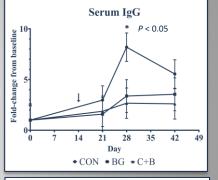
To evaluate the effects of 150-ppm dietary inclusion of a yeast β-1,3/1,6 glucan (58% β-glucan) on apparent total tract digestibility (ATTD) of macronutrients, and peripheral blood mononuclear cells (PBMC) of adult dogs and to test the effects of retorting on the efficacy of these β-glucans.

Materials and Methods

- Twenty-four adult, female beagles were used in a completely randomized design.
- Three retorted diets were prepared: CON: Control diet (n = 8), BG:
 CON with beta-glucan included in formulation prior to retorting (n = 8),
 and C+B: CON plus beta-glucan top-dressed on food upon time of
 feeding (n = 8).
- · Yeast product was added at 150-ppm of diet.
- Following a 7 d adaptation to CON, dogs were fed their respective dietary treatments for 42-d and were challenged with an oral Bordetella bronchiseptica vaccine on d 14 with blood collections on d 0, 21, 28, and 42 with a 4-d fecal collection ending on d 42.
- Feces were analyzed for digestibility and fermentative end-products.
- Blood was analyzed for PBMC and vaccine-specific immunoglobulins.

le 1. Diet Chemical Composition	Treatment					
Item, %	CON	BG				
Moisture	77.7	74.5				
	Dry Matter Basis					
Crude protein	39.1	39.4				
Acid hydrolyzed fat	22.9	23.2				
Total dietary fiber	2.2	2.2				
Ash	6.7	4.3				
G.E., kcal/g	5.6	5.6				

Table 2. Apparent Total Tract	^{a-b} <i>P</i> < 0.05			
		Treat	ment	x-y P < 0.10
Item, %	CON	BG	C+B	SEM
Dry matter	85.4 ^b	87.3 ^a	86.1 ^{ab}	0.50
Organic matter	90.0 ^y	91.2×	91.0 ^{xy}	0.34
Crude protein	85.2 ^b	87.5a	86.5ab	0.46
Acid hydrolyzed fat	95.3 ^y	96.3×	95.5 ^{xy}	0.29
Energy, kcal	5.0 ^b	5.2a	5.1 ^{ab}	0.02


Table 3. Change from Baseline Values of Antigen Presenting Cell Populations of PBMC in Dogs fed Diets with or without Yeast Beta-glucan Supplementation

Treatment

	Treatment												
	Control			BG				C+B		SEM	Type 3 Fixed Effects		Fixed Effects
Item, % units	d21	d28	d42	d21	d28	d42	d21	d28	d42	T*D	Trt	Day	T*D
Monocytes													
Total	5.4	4.3	8.8	0.3	9.9	10.2	4.5	14.1	9.7	4.40	0.8205	0.0088	0.1849
Mon:MFla	11.8	5.4	4.6	18.8	3.2	8.1	13.5	8.4	12.6	5.23	0.7981	0.0043	0.3752
Mon:MFIb	29.9	9.2	5.8	35.6	-0.1	9.2	33.8	17.7	11.2	9.55	0.8536	<0.0001	0.343
B-cells													
Total	2.18	2.49	0.7	4.59	3.23	3.5	2.28	-0.73	0.6	1.74	0.4170	0.0376	0.1849

Bcell:MFIa 52.2 15.9 17.2 67.0 21.6 25.7 71.7 41.4 27.7 62.94 0.9049 <0.0001 0.7741

Figure 1. Vaccine-Specific Serum IaG Response

Conclusions

- The 150-ppm inclusion of this yeast β-glucan had no detrimental effects on ATTD, fecal characteristics and metabolites, nor any analyzed PBMC.
- Higher doses of yeast-derived β-glucan might be needed to elicit an immunological modulation in healthy adult dogs.

Acknowledgements

Graduate Students and research associates of the Godoy I-CAN Program.

Dr. Andrew Steelman's laboratory