

Introduction

- Dietary omega-3 fatty acids have been associated with decreased risk of several chronic diseases.
- Most people do not get enough omega-3 fatty acids from their diets.
- Microalgae are a good source of omega-3 fatty acids and has the potential to increase meat and milk content of omega-3 fatty acids.
- Nannochloropsis oculata is a rich source of rumenprotected EPA, DHA and CLA as well as essential amino acids.
- Our objective was to evaluate the effects of *N. oculata* microalgae at 5 or 10 g/doe/d on feed intake, digestibility, ruminal fermentation, blood chemistry, lactational performance and milk fatty acid profile of Nubian goats.

Materials and Methods

- Fifteen multiparous lactating Nubian goats, weighing 33.0±1.3 kg in their first week of lactation, were randomly assigned to three treatments.
- Treatments were a basal diet (control), control + 5 g (NO5 treatment) or 10 g (NO10 treatment) of N. oculata microalgae.
- The study was arranged in a quintuplicated 3 × 3 Latin Square design, resulting in 15 replicates per treatment.
- We estimated DMI, nutrient intake and digestibility.
- Blood, milk and rumen fluid samples were collected and evaluated for blood parameters, milk composition and fatty acid profile, and ruminal pH, ammonia-N and volatile fatty acids.

Nannochloropsis oculata microalgae as a natural source of rumen-protected eicosapentaenoic acid in diets of lactating Nubian goats

¹North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA ²Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt

ith	Table 1 Feed intake, nutrients digestibility, nutritive value and rumina goats fed a basal diet supplemented with <i>Nannochloropsis oculata</i> .							
	Treatments ¹	SEM	P value					

	Treatments ¹			SEM	P value					
	Control	NO5	NO10	_	Treatment	Period	Control vs. Others	Linear	Quadratic	
Intake, g/d	1067	1075	1072	17.0	0.944	0.282	0.755	0.837	0.788	
Digestibility, g/kg										
DM	581 ^b	623 ^a	627 ^a	5.3	< 0.001	0.019	< 0.001	$<\!0.001$	0.006	
OM	574 ^b	608^{a}	609^{a}	1.5	< 0.001	$<\!0.001$	< 0.001	$<\!0.001$	< 0.001	
CP	579 ^b	615 ^a	621 ^a	5.8	< 0.001	$<\!0.001$	< 0.001	$<\!0.001$	0.043	
EE	591	607	605	5.4	0.078	$<\!0.001$	0.026	0.067	0.175	
NSC	549 ^b	603 ^a	613 ^a	5.7	< 0.001	0.152	$<\!0.001$	$<\!0.001$	0.003	
NDF	555 ^b	592 ^a	604^{a}	6.9	< 0.001	0.002	< 0.001	$<\!0.001$	0.170	
ADF	542 ^b	583 ^a	584^{a}	7.5	0.003	0.151	< 0.001	0.004	0.039	
Digestible nutrients and	l energy val	lue ²								
DCP, g/kg DM	73.8 ^b	78.4^{a}	79.2^{a}	0.74	< 0.001	$<\!0.001$	$<\!0.001$	$<\!0.001$	0.043	
DE, MJ/kg DM	2.36^{b}	2.52^{a}	2.54^{a}	0.017	< 0.001	0.484	$<\!0.001$	$<\!0.001$	0.008	
ME, MJ/kg DM	2.38 ^b	2.55^{a}	2.56^{a}	0.018	< 0.001	0.457	$<\!0.001$	$<\!0.001$	0.009	
NEl, MJ/kg DM	1.19^{b}	1.28^{a}	1.29^{a}	0.010	$<\!0.001$	0.419	$<\!0.001$	$<\!0.001$	0.001	
pН	5.94	6.03	6.14	0.060	0.078	0.077	0.057	0.025	0.904	
Ammonia-N, g/L	25.3	26.3	27.3	0.79	0.239	0.357	0.148	0.093	0.973	
VFA, mmol/L	115c	124b	133a	2.700	0.002	$<\!0.001$	0.002	$<\!0.001$	0.901	
C_2 , mmol/100 mmol	56.5	57.4	55.1	1.63	0.617	0.799	0.918	0.565	0.430	
C_3 , mmol/100 mmol	25.0b	27.4a	27.8a	0.850	0.045	0.468	0.022	0.031	0.356	
C ₄ , mmol/100 mmol	16.4	13.5	13.5	1.29	0.201	0.381	0.077	0.120	0.372	
C_2/C_3 ratio	2.31	2.11	2.00	0.123	0.223	0.413	0.110	0.090	0.799	
CH ₄ ² , mmol/L	$\frac{25.1a}{25.1a}$	23.7ab	22.5b	0.670	0.045	0.943	0.026	0.014	0.882	

Means in the same row with different superscripts differ (P < 0.05). SEM, standard error of the mean. ¹The control diet based on (per kg DM): 600 g of concentrates feed mixture, 200 g berseem clover and 200 g wheat straw without addition of supplements (Control treatment) or with addition of 5 g (NO5 treatment) or 10 g of Nannochloropsis oculata/doe/d (NO10 treatment). ²Calculated according to NRC (NRC, 2001).

Table 2 Weight changes, milk yields, composition and fatty acid profile of lactating Nubian goats fed a basal diet supplemented with Nannochloropsis oculata.

		Treatments ¹			SEM	P value					
		Control	NO5	NO10		Treatment	Period	Control vs. Others	Linear	Quadratic	
	Body weight, kg										
	Initial	32.9	33.2	32.9	0.31	0.797	0.725	0.821	0.904	0.510	
	Final	31.6	31.9	31.8	0.47	0.896	0.024	0.672	0.789	0.702	
	Changes, g/d	-16.0	-14.9	-13.2	5.55	0.938	0.063	0.781	0.725	0.959	
	Production, g/d										
	Milk	1034b	1144a	1185a	30.7	0.004	0.091	0.001	0.001	0.368	
	ECM	973b	1073a	1110a	29.4	0.006	0.042	0.002	0.002	0.392	
	FCM (4%)	989b	1088a	1118a	29.5	0.010	0.045	0.003	0.004	0.348	
	Total solids	126b	140a	145a	3.8	0.003	0.064	0.009	0.008	0.365	
	Solids not fat	87.4b	97.8a	102a	2.7	0.001	0.095	0.004	0.003	0.384	
	Protein	34.0	36.0	37.6	1.06	0.065	0.018	0.036	0.021	0.875	
	Fat	38.3b	42.0a	42.9a	1.19	0.023	0.032	0.007	0.009	0.351	
	Lactose	45.0b	52.4a	54.9a	1.48	< 0.001	0.283	< 0.001	$<\!\!0.001$	0.198	
	Ash	8.45b	9.46a	9.84a	0.28	0.003	0.158	0.001	0.001	0.365	
	Milk efficiency										
ſ	Milk/DMI	0.98b	1.07a	1.11a	0.032	0.019	0.061	0.007	0.006	0.501	
	ECM/DMI	0.92b	1.00a	1.04a	0.031	0.033	0.035	0.012	0.011	0.519	
	SFA	70.8	68.9	67.5	1.58	0.303	0.650	0.402	0.116	0.775	
	UFA	29.6b	31.4a	32.9a	0.58	0.002	0.667	0.002	0.006	0.776	
	MUFA	28.2b	30.0a	31.4a	0.57	0.003	0.629	0.002	0.007	0.777	
	PUFA	1.35b	1.42ab	1.48a	0.035	0.049	0.368	0.029	0.015	0.908	
	Total CLA	0.44	0.47	0.49	0.047	0.059	0.035	0.771	0.153	0.057	
	Omega-6/omega-3	2.32	2.28	2.34	0.101	0.896	0.515	0.965	0.847	0.673	
	UFA/SFA	0.42b	0.46a	0.49a	0.012	0.003	0.659	0.002	0.007	0.827	
	Atherogenic index ²	2.28a	2.10b	1.92b	0.068	0.004	0.912	0.002	0.001	0.730	

Means in the same row with different superscripts differ (P < 0.05). DMI, dry matter intake; ECM, energy corrected milk; FCM, fat corrected milk; SEM, standard error of the mean. ¹The control diet based on (per kg DM): 600 g of concentrates feed mixture, 200 g berseem clover and 200 g wheat straw without addition of supplements (Control treatment) or with addition of 5 g (NO5 treatment) or 10 g of Nannochloropsis oculata/doe/d (NO10 treatment). ²Calculated according to Ulbricht and Southgate (Ulbricht et al., 1991): atherogenic index = $(C12:0 + 4 \times C14:0 + 1)$

C16:0)/ Σ of UFA.

U.Y. Anele¹, A.E. Kholif², G.A. Gouda²

Results

nal fermentation parameters of lactating Nubia

- fatty acids in milk.
- index (P=0.004).
- composition.

NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY • COLLEGE of AGRICULTURE and ENVIRONMENTAL SCIENCES

• Dietary treatments did not affect feed intake.

• Greater (P<0.001) energy value in form of DE, ME and NEI were noted in *N. oculata dietary* treatments.

• Apart from EE digestibility, *N. oculata* inclusion increased (P<0.01) nutrient digestibility.

• But the increased nutrient digestibility did not result in any change in final BW or ADG.

• *N. oculata* inclusion had a linear effect on total volatile fatty acids (P=0.002) and propionic acid.

• *N. oculata* inclusion did not have any effect on rumen pH.

 Dietary treatments linearly increased (P<0.01) daily milk production and the concentration of lactose.

• Treatments did not affect the concentration of individual

 Increased concentrations of MUFA, PUFA and C20:5n3 (EPA) were noted with *N. oculata* inclusion.

• Both NO5 and NO10 treatments decreased atherogenic

• Except for glucose concentration, dietary treatments did have any effect on blood parameters.

• In conclusion, supplementing the diet of lactating Nubian goats with N. oculata microalgae at 5 and 10 g daily enhanced milk production and altered milk fatty acid

 Both concentrations evaluated in the present study had similar effects; therefore, the lower dose of 5 g daily is recommended for practical use in lactating does.