

The effects of varying amylose levels in different diets on digestibility and glycemic response in canines

Quilliam, C., Ren, Y., Morris, T., Ai, Y., Weber, L.P.

Introduction

- In canines, blood glucose response varies based on the type of carbohydrate and rate of digestion^{1,2}
- Low glycemic diets promote weight loss or maintenance of weight through increased satiety³
- In human studies, amylose is a slowly digested starch that could decrease glycemic response and digestibility⁴

Study Objectives

- In dogs, compare starch digestibility among diets based on their varying levels of amylose
- Assess the glycemic response of diets to determine which diet promotes a lower glycemic response in dogs

Hypothesis

Dog diets with higher levels of amylose will produce a low glycemic response due to decreased rates of digestion

Materials & Methods

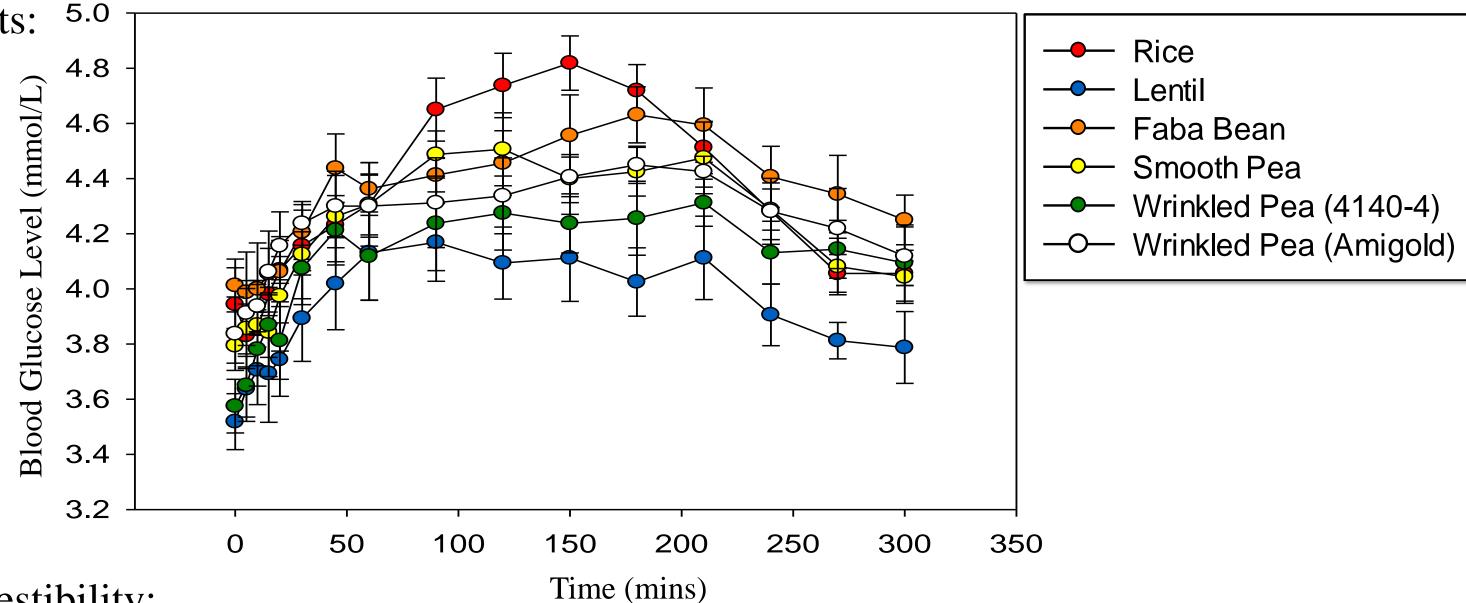
Whole Blood &

Plasma

Blood Glucose

Levels

Fecal Samples for


Digestibility

Results

Diet Formulations:

Ingredient Name	Rice Diet	Lentil Diet	Faba Bean Diet	Smooth Pea Diet	Wrinkled Pea Diet (4140-4)	Wrinkled Pea Diet (Amigold)	
Flour (%)	23.12	42.19	46.4	41.67	58.65	58.14	
Chicken Meal (By-Product, %)	37.83	21.494	17.533	24.26	8.85	9.034	
SOLKA-FLOC (%)	15	13.812	13.563	11.57	10	10	
Chicken Fat (%)	10	10	10	10	10	10	
Fish Meal (%)	5	5	5	5	5	5	
Canola Oil (%)	6.55	5	5	5	5	5	
Celite (%)	1	1	1	1	1	1	
Vitamin/Mineral Premix (%)	1	1	1	1	1	1	
NaCl (%)	0.3	0.3	0.3	0.3	0.3	0.3	
Choline Chloride (%)	0.1	0.1	0.1	0.1	0.1	0.1	
Calcium Carbonate (%)	0.05	0.05	0.05	0.05	0.05	0.05	
Dicalcium Phosphate (%)	0.05	0.05	0.05	0.05	0.05	0.376	
Amylose Content (% in diet)	4.64	6.84	7.01	7.30	13.09	14.82	

Glycemic Response of Diets: 5.0

Glycemic Response & Digestibility:

						Wrinkled Pea	Wrinkled Pea	
	Glucose	Rice	Lentil	Faba Bean	Smooth Pea	(4140-4)	(Amigold)	P - Value
Fasted Blood								
Glucose (mmol/L)*	3.8 ± 0.2	3.9 ± 0.1^{a}	3.5 ± 0.1^{b}	4.0 ± 0.1^{a}	3.8 ± 0.06^{a}	3.6 ± 0.1^{b}	3.8 ± 0.1^{a}	< 0.001
Peak (mmol/L)*	6.3 ± 0.2	$5.0\pm0.09^{\mathrm{a}}$	$4.4 \pm 0.1^{\rm b}$	$4.8 \pm 0.1^{\mathrm{a,b}}$	$4.7 \pm 0.1^{\mathrm{a,b}}$	$4.5 \pm 0.1^{a,b}$	$4.7\pm0.1^{\mathrm{a,b}}$	0.01
Time to Peak (mins)**	52.5 ± 5.5	135 ± 12.7	99.4 ± 18.6	132.5 ± 20.9	91.9 ± 9.2	111.6 ± 18.0	130 ± 22.8	0.2
AUC (mmol/L x mins)*	849.3 ± 19.6	810.9 ± 15.8^{a}	726.5 ± 21.7^{b}	$792.6 \pm 12.6^{a,b}$	$780.2 \pm 14.0^{a,b}$	$749.4 \pm 18.8^{a,b}$	$776 \pm 14.1^{\text{a,b}}$	0.02
Glycemic Index *		95.7 ± 2.2^{a}	85.8 ± 2.8^{b}	93.6 ± 2.2^{a}	$92.2 \pm 2.6^{a,b}$	88.3 ± 1.5 a,b	91.5 ± 1.2^{a}	< 0.001
Digestibility (%) **		$99.98 \pm 0.004^{a,b}$	99.98 ± 0.008^{a}	$99.98 \pm 0.002^{a,b}$	$99.98 \pm 0.002^{a,b,c}$	$99.88 \pm 0.02^{b,c}$	$99.88 \pm 0.02^{\circ}$	< 0.001

Conclusions

- In general, diets with higher amylose levels produced a lowered glycemic response
- > However, extrusion resulted in kibbles of different densities with the most dense diet being the lentil diet which confounded the above effect
- ➤ Increased amylose content decreases diet digestibility
- > Amylose could be utilized in dog diets to promote a low glycemic response and potentially prevent the development of obesity and diabetes, ultimately improving animal health

References

- ▶ 1. Thomas, D. E., Brotherhood, J. R., & Brand, J. C. (1991). Carbohydrate feeding before exercise: effect of glycemic index. International journal of sports medicine, 12(02), 180-186.
- 2. Nguyen, P., Dumon, H., Biourge, V., & Pouteau, E. (1998). Glycemic and insulinemic responses after ingestion of commercial foods in healthy dogs: influence of food composition. The Journal of nutrition, 128(12), 2654S-2658S.
- 3. Jones, J. (2013). Glycemic Index. *Nutrition Today*, 48(1). Retrieved from http://search.proquest.com/docview/1315774502/
- 4. Anderson, G. H., & Woodend, D. (2003). Effect of glycemic carbohydrates on short-term satiety and food intake. Nutrition reviews, 61(suppl_5), S17-S26.

Acknowledgements

