

Evaluation of acid insoluble ash as a reliable digestibility marker in beef feedlot diets containing corn-milling byproducts

Paige R. Spowart*, Michael L. Galyean†, Jordan A. Easom*, Larry D. Fritzler*, David G. Lust*, and Kendall L. Samuelson* *Department of Agricultural Sciences, West Texas A&M University, Canyon, TX *†Office of the Provost, Texas Tech University, Lubbock, TX*

Introduction

- Total collection of feed and feces is the "golden standard" to estimate digestibility but can be challenging, which makes internal markers practical
- Acid insoluble ash (AIA) is a naturally occurring internal digestibility marker measured within feed and feces (Van Keulen and Young, 1997)
- Published studies use inconsistent protocols to predict digestibility when using AIA as an internal digestibility marker
- Increased byproduct use in feedlot cattle diets (Samuelson et al., 2016) creates a need to evaluate methods for determining digestibility when using ingredients such as wet corn gluten feed

Objective

To investigate the accuracy of various sampling frequencies when using AIA as a marker to calculate nutrient digestibility of beef feedlot receiving and finishing diets containing corn-milling byproducts

Materials and Methods

Study Procedures

- Procedures were approved by the WTAMU IACUC Committee
- 6 Angus × Hereford beef steers (3 diet replicates per period; 2 periods) > Crossover split-plot design with steer as the experimental unit
- \blacktriangleright Period 1 = 304 ± 5.34 kg; Period 2 = 344 ± 4.72 kg
- 28-d periods:
 - \succ 1 to 15 d: Diet transition and adaptation to treatment diets
 - \succ 16 to 20 d: Introduction to metabolism stanchions
 - \succ 21 to 28 d: 7-d collection period
- Dietary treatments:
 - Steam-flaked corn-based beef-feedlot diets: **REC**, **FIN** (Table 1)
 - \blacktriangleright Limit fed 2.0% of BW to mitigate residual feed refusals
- Sampling method treatments:

➢ TC, 1AIA, 3AIA, 5AIA, 7AIA

- Daily collections consisted of: ➤ Total collection of feed and feces and 12 h rectal-grab samples
- Laboratory Procedures
 - ➢ Feed, feed refusals and feces were analyzed for:
 - > Dry Matter (DM), Organic Matter (OM), Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), and Acid Insoluble Ash (AIA) concentrations
- Statistical Analysis
 - All data was analyzed using the MIXED procedure of SAS
 - Model included the effects of sequence, diet, collection method, and diet \times collection method
 - > Period and animal within period \times sequence \times diet combination were random

Table 1. Diet composition of treatment diets

	Treatments	
Item	REC ⁴	FIN ⁵
Ingredient, % of DM		
Corn Grain, Flaked	32.54	58.55
Corn Stalks	19.00	8.00
Sweet Bran ¹	38.00	20.00
Molasses Blend ²	7.00	5.00
Corn Oil	0.00	3.00
Limestone	0.00	1.05
Urea	0.00	0.90
Supplement	3.46	3.50
Nutrient Composition. DM basis ³		
DM, %	70.02	76.55
TDN, %	75.90	88.50
CP, %	14.20	13.10
NDF, %	32.89	19.07
ADF, %	14.81	7.37
Ca, %	1.15	0.80
P, %	0.49	0.35
NE _m , Mcal/kg	1.83	2.20
NE _g , Mcal/kg	1.19	1.52

Wet corn gluten feed (Sweet Bran, Cargill animal Nutrition, Bovina, TX) ²72 Brix Molasses Blend (Westway Feed Products LLC, Hereford, TX) ³Analysis completed by a commercial laboratory (Servi-Tech Laboratories, Hastings, NE) or in the West Texas A&M University Ruminant Nutrition Laboratory. ⁴REC formulated to meet or exceed NRC requirements for vitamins and minerals (NRC, 1989) and supplied 24 mg/kg monensin sodium on a DM basis. ⁵FIN formulated to meet or exceed NRC requirements for vitamins and minerals (NRC, 1989) and supply 43 mg/kg monensin sodium and 11 mg/kg tylosin phosphate on a DM basis.

Discussion and Conclusions

• When grain-milling byproducts such as wet corn gluten feed are included in feedlot diets: Digestibility of DM and OM is greatest for finishing diets Digestibility of NDF and ADF is greatest for receiving diets

- Using AIA as a method to determine digestibility is not as accurate as total collection of feed and feces and will over estimate digestibility of feedlot diets Accuracy of digestibility estimates using AIA as a marker were improved as the number
- of collection days increased

Acknowledgments

- Funding was provided by West Texas A&M University and the Killgore Faculty Research Program
- Thank you to the WTAMU Nance Ranch and Research Feedlot crew for providing facilities and accommodations