

# Introduction

- Ruminants are the primary contributor of anthropogenic greenhouse gas (GHG) emission.
- Methane is an important GHG in ruminants.
- Several variables influence enteric methane production in ruminants.
- Numerous studies have shown that diet composition plays an important role in methane production.
- Reducing GHG emission in ruminants will save at leas 2 to 12% of dietary gross energy (Johnson and Johnson, 1995).
- Our objective was to evaluate the effects of dietary modification in reducing methane production using inoculum form buffaloes.

### **Materials and Methods**

- Formulated thirty diets to meet the nutrient requirements of buffaloes for maintenance, growth and production.
- Ten diets were formulated for each of these requirements.
- The study was arranged in a completely randomized design.
- The diets were analyzed to determine their chemical composition.
- The Cornell Net Carbohydrate and Protein System was used to estimate the carbohydrate and protein fractions.
- The *in vitro* batch technique was used to evaluate the diets.

**NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY** • COLLEGE of AGRICULTURE and ENVIRONMENTAL SCIENCES

# Chemical composition, in vitro dry matter digestibility, gas production and methane emission of maintenance, growth and production diets/rations of buffaloes

U.Y. Anele<sup>1</sup>, S. Singh<sup>2</sup>, B.P. Kushwaha<sup>2</sup>, P.K. Gupta<sup>2</sup>, S. Bhattacharya<sup>2</sup>

**Table 1** Cumulative gas production (GP), *in vitro* DM digestibility (IVDMD), carbohydrate and protein fractions of maintenance (MD), growth (GD) and production (PD) requirements for buffaloes.

| -   |                 |         |                 | <i>'</i> | · · · · · | · •     |         |         |                 |                 |                 |         |
|-----|-----------------|---------|-----------------|----------|-----------|---------|---------|---------|-----------------|-----------------|-----------------|---------|
|     | Diets           | GP      | CH <sub>4</sub> | IVDMD    | TCHO      | NSC     | SC      | PA      | P <sub>B1</sub> | P <sub>B2</sub> | P <sub>B3</sub> | PC      |
| -   | Maintenance     |         |                 |          |           |         |         |         |                 |                 |                 |         |
|     | $MD_1$          | 164.25  | 20.68           | 421.9    | 768.2     | 160.8   | 607.4   | 35.6    | 101.4           | 357.9           | 236.9           | 268.2   |
|     | $MD_2$          | 153.81  | 23.45           | 401.5    | 750.6     | 128.5   | 622     | 18.1    | 95.3            | 286.9           | 300.6           | 299.1   |
| on  | $MD_3$          | 162.94  | 39.85           | 481.7    | 821       | 185.1   | 635.9   | 194.5   | 194.9           | 233.3           | 157.1           | 220.2   |
| OII | $MD_4$          | 167.88  | 40.42           | 410.5    | 818.6     | 188.7   | 629.9   | 187     | 185.1           | 327.6           | 88.8            | 211.5   |
|     | MD <sub>5</sub> | 164.44  | 25.66           | 425.9    | 769.8     | 214.7   | 555.1   | 172.9   | 213.1           | 429.6           | 48.9            | 135.5   |
|     | $MD_6$          | 159.69  | 33.31           | 552      | 823.8     | 300.3   | 523.5   | 123.5   | 129.9           | 576.1           | 70.9            | 99.6    |
|     | MD <sub>7</sub> | 178.31  | 28.35           | 359.9    | 831.8     | 157.5   | 674.3   | 187.6   | 217.9           | 24.3            | 425.2           | 145     |
|     | $MD_8$          | 164.44  | 22.42           | 354.7    | 753.1     | 195.8   | 557.3   | 14.9    | 67.8            | 485.2           | 257.3           | 174.7   |
|     | MD9             | 155.50  | 23.91           | 473.5    | 816.9     | 300.5   | 516.4   | 74.4    | 158.9           | 411.9           | 209.3           | 145.5   |
|     | $MD_{10}$       | 160.38  | 25.94           | 346.3    | 739.2     | 199.5   | 539.7   | 47.7    | 138             | 440             | 260.7           | 113.7   |
| ast | Growth          |         |                 |          |           |         |         |         |                 |                 |                 |         |
|     | $GD_1$          | 163.88  | 22.47           | 507.8    | 776.1     | 196     | 580.2   | 310.3   | 212.9           | 228.2           | 125.5           | 123.2   |
|     | $GD_2$          | 162.06  | 33.62           | 488.9    | 725.6     | 237.9   | 487.7   | 27.8    | 85.4            | 547             | 194.2           | 145.6   |
|     | GD <sub>3</sub> | 166.75  | 36.91           | 530.1    | 742.7     | 88.9    | 653.8   | 171.3   | 213.6           | 359.2           | 137.7           | 118.2   |
|     | GD <sub>4</sub> | 166.13  | 42.61           | 690.4    | 734.8     | 141.9   | 592.9   | 172     | 202.4           | 385             | 154.9           | 85.7    |
|     | GD <sub>5</sub> | 163.19  | 26.96           | 435.5    | 778.8     | 192.1   | 586.6   | 167.4   | 295.5           | 336             | 113.9           | 87.2    |
|     | $GD_6$          | 166.13  | 23.63           | 529.6    | 780.4     | 247.9   | 532.5   | 140.7   | 292.3           | 428.9           | 28.4            | 109.6   |
|     | GD7             | 173.31  | 32.23           | 408.9    | 775.8     | 217.8   | 558     | 203.1   | 192.1           | 356.8           | 100.5           | 147.5   |
|     | $GD_8$          | 166.56  | 21.56           | 354.5    | 786.6     | 124.9   | 661.6   | 109.6   | 218.2           | 416             | 146.3           | 109.8   |
|     | GD9             | 159.38  | 29.21           | 468.6    | 783.2     | 320     | 463.2   | 50.8    | 188.2           | 489.7           | 141.8           | 129.6   |
|     | $GD_{10}$       | 160.50  | 26.64           | 363.4    | 706.8     | 231.9   | 474.8   | 15.9    | 146.7           | 550.6           | 195.4           | 91.4    |
|     | Producti        | on      |                 |          |           |         |         |         |                 |                 |                 |         |
|     | $PD_1$          | 161.00  | 41.14           | 621.4    | 752.2     | 288.5   | 463.8   | 123.6   | 242.4           | 423.1           | 95.2            | 115.7   |
|     | $PD_2$          | 162.44  | 34.31           | 680.4    | 707       | 237     | 470.1   | 49.4    | 146.5           | 364.4           | 291.4           | 148.3   |
|     | PD <sub>3</sub> | 164.44  | 38.06           | 599.8    | 745.8     | 143.6   | 602.2   | 249.3   | 279.3           | 174.9           | 186.8           | 109.7   |
|     | $PD_4$          | 168.31  | 40.94           | 502.7    | 765.3     | 203.5   | 561.8   | 158.2   | 296.4           | 304.5           | 132.9           | 108     |
|     | PD <sub>5</sub> | 167.63  | 34.69           | 447      | 740.7     | 231.2   | 509.5   | 134.4   | 258.9           | 463.9           | 55.5            | 87.4    |
|     | $PD_6$          | 165.25  | 33.39           | 563.4    | 764.3     | 333.5   | 430.8   | 96.9    | 208.1           | 508.5           | 113.1           | 73.4    |
|     | PD <sub>7</sub> | 169.69  | 30.40           | 460.4    | 762.3     | 233     | 529.3   | 71.3    | 171.1           | 595.1           | 72.1            | 90.4    |
|     | $PD_8$          | 152.56  | 18.66           | 381.3    | 744.8     | 133.1   | 611.7   | 101.5   | 223.6           | 492.5           | 65.6            | 116.8   |
|     | PD9             | 161.94  | 32.68           | 533.9    | 778.7     | 262.5   | 516.2   | 143.5   | 228.4           | 431.6           | 88.3            | 108.2   |
|     | $PD_{10}$       | 159.13  | 27.02           | 532.8    | 687.4     | 253.2   | 434.1   | 20.2    | 119.6           | 364.3           | 413.6           | 82.3    |
|     | SEM             | 1.60    | 2.13            | 28.19    | 8.9       | 19.2    | 20.4    | 20.2    | 18.1            | 37.2            | 36.7            | 6.8     |
|     | P value         | < 0.001 | < 0.001         | < 0.001  | < 0.001   | < 0.001 | < 0.001 | < 0.001 | < 0.001         | < 0.001         | < 0.001         | < 0.001 |

**Table 2** Correlation between *in vitro* methane production and chemical composition of the diets/rations

| <b>Chemical composition</b> | CH <sub>4</sub> g/g DDM | <b>Protein fractions</b> | CH <sub>4</sub> g/g DDM | <b>CHO fractions</b> | $CH_4 g/g DDN$ |
|-----------------------------|-------------------------|--------------------------|-------------------------|----------------------|----------------|
| СР                          | -0.134                  | NDIP                     | -0.448**                | ТСНО                 | 0.353**        |
| OM                          | 0.266**                 | ADIP                     | -0.272**                | NSC                  | 0.115          |
| EE                          | -0.422**                | SP                       | 0.387**                 | SC                   | 0.083          |
| NDF                         | -0.009                  | NPN                      | 0.450**                 | Starch (% NSC)       | -0.104         |
| ADF                         | -0.127                  | PA                       | 0.412**                 | C <sub>c</sub> DM    | -0.365**       |
| Cellulose                   | -0.073                  | $P_{B1}$                 | 0.284**                 | $C_{B2}DM$           | 0.278**        |
| Hemi cellulose              | 0.130                   | $P_{B2}$                 | -0.053                  | $C_{B1}DM$           | 0.031          |
| Lignin                      | -0.365**                | P <sub>B3</sub>          | -0.341**                | C <sub>A</sub> DM    | 0.091          |
| Energy                      | -0.032                  | P <sub>C</sub>           | -0.145                  |                      |                |

<sup>1</sup>North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA <sup>2</sup>ICAR-Indian grassland and fodder Research institute, Jhansi 284003 UP, India

## Results

- (105.6 g/kg DM).
- in the protein fractions.

- buffaloes.

• Production diets crude protein and ether extract contents were (P<0.001) higher (126.8 and 32.2 g/kg DM) than maintenance diets (82.0 and 21.0 g/kg DM).

• The fiber components were (P<0.001) lower in production (546.3, 332.8 and 244.8 g/kg DM) than maintenance diets (617.6, 395.5 and 293.0 g/kg DM).

• Protein fractions PB1 and PB2 of maintenance diets were lower (P<0.001) than growth and production diets, while protein fractions (PB3) and Pc were (P<0.001) higher in maintenance than growth and production diets.

• Mean values of PA was (P<0.001) higher in growth diets (136.9) than production (114.8) and maintenance diets

• The carbohydrate fractions followed similar trend as noted

• In vitro gas production at different time periods (12, 24) and 48 h) was similar for maintenance (63.04, 51.98 and 48.15 ml/g DM), growth (63.83, 52.73 and 48.250) and production diets (63.51, 52.54 and 47.21 ml/g DM).

• In vitro methane production as a proportion of degraded DM (ml/g DDM and g/kg DDM) were similar for maintenance (14.21 and 29.53), growth (42.19 and 30.25) and production diets (41.26 and 29.58), respectively.

• Dietary chemical constituents viz. EE, lignin, NDIN, ADIN and PB3 and Cc DM were (P<0.05) negatively associated with methane production, while OM, NPN, SP, PA and PB1, TCHO and CB<sub>2</sub> contents of the diets were positively (P<0.05) correlated with methane production.

• In conclusion, the diets formulated in the present study may not be sufficient to reduced methane production in