Evaluation of different ensiling methods of the residual material from edamame soybean processing

Introduction

- Livestock producers often rely on the weather to offer available forage.
- In years where forage availability is low, producers may use waste products from other industries as a form of supplemental feed.
- A waste product that is produced in Arkansas and has potential as a co-product for supplemental feed is edamame.
- The objective of this research was to evaluate the storage and feeding value of residual from edamame soybean production on a laboratory scale.

Methods

- Two types of residual or waste material were ensiled in 500 g silos (\geq 3 silos per treatment):
 - Waste from harvesting
 - Waste from processing stored material
- Harvest material (a single trip):
 - Ensiled either without wilting (fresh, 71%) moisture) or after wilting to a target of 60% moisture
 - Material at each targeted moisture level was ensiled with and without a commercial lactic acid bacterial inoculant (Lactobacillus buchneri)
- Material from processing (4 replicate trips):
 - Ensiled at 80 (fresh), and targets of 65, 50, and 35% moisture
 - Material at each targeted moisture level was ensiled with and without a commercial lactic acid bacterial inoculant (Lactobacillus buchneri)
- Silos opened after:
 - 42 days (harvest waste) of ensiling
 - 50 days (processing waste) of ensiling
- Proc GLM was used to analyze data:
 - DM at ensiling, inoculant treatment, and DM x inoculant treatment were the fixed effects
- Harvest waste data were analyzed using Proc GLM
- Processing waste data analyzed using Proc Mixed
 - Trip was a random effect

H 5.5

7.5

3.5

CP, %

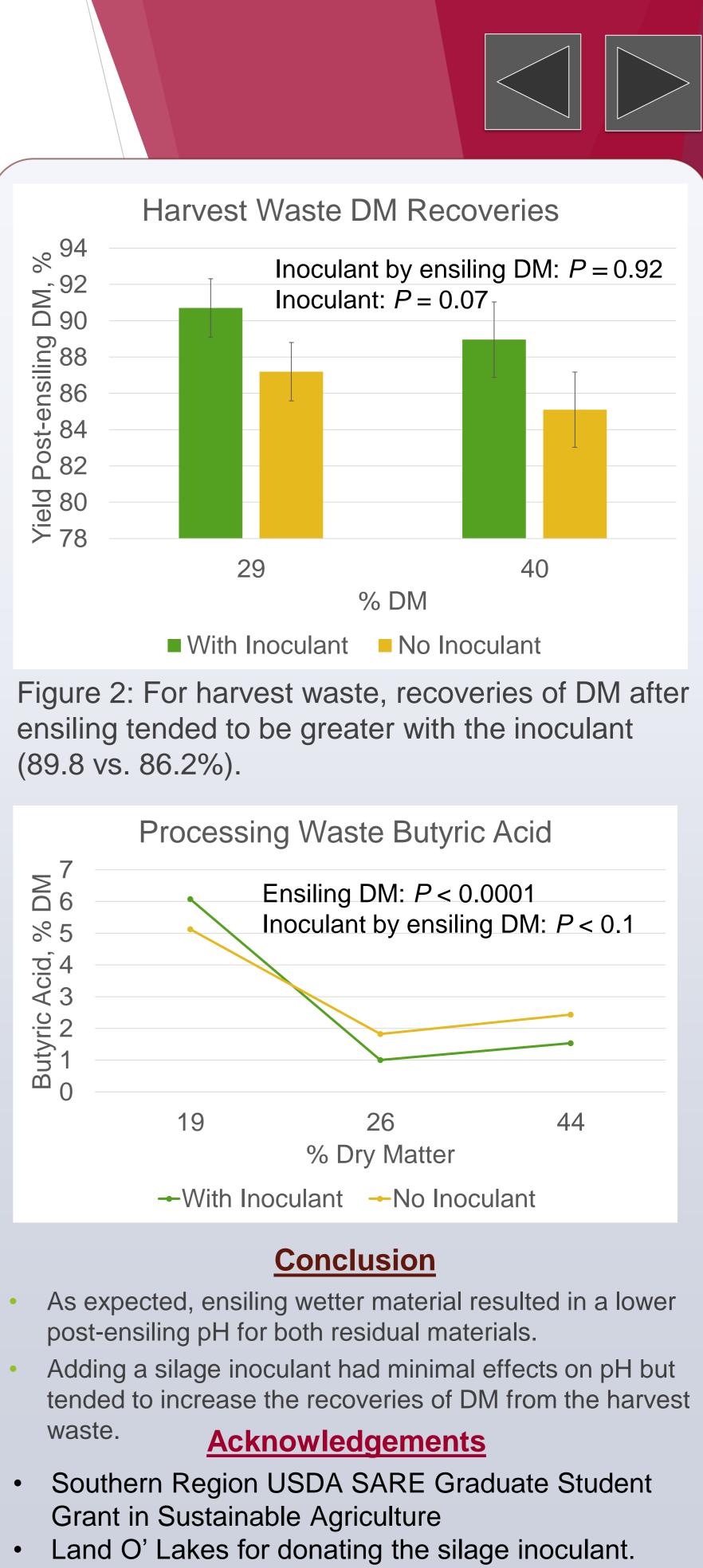
NDF, %

ADF, %

Ash, %

Figure 3: For harvest waste, there were no effects of inoculant or a treatment DM by inoculant interaction for nutrient content.

E. M. Herring*, E. B. Kegley*, K. P. Coffey*, M. S. Gadberry*, J. G. Powell*, and K. S. Anschutz* *Department of Animal Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701



Fresh		Ensiled	
28% DM	39% DM	26% DM	36% DM
14.85	16.34	14.16	14.28
50.58	52.98	50.8	43.55
38.92	40.86	40.02	33.27
22.96	30.41	24.44	30.79
		_	

Processing Waste Fermentation Profiles

	n	19% DM		
Total VFA, % DM	39	7.9 ± 0.7		
Lactic Acid, % Total VFA	39	0.8 ± 2.2		
Lactic Acid, % DM	39	0.07 ± 0.1		
Acetic Acid, % DM	39	1.5 ± 0.47		
Propionic Acid, % DM	39	0.8 ± 0.1		
Butyric Acid, % DM	39	5.6 ± 0.3		
Ammonia (CPE), %DM	39	1.8 ± 0.2		
Samples from silos that were \leq 4.8 pl				

26% DM	44% DM	P - value
9.3 ± 0.7	7.7 ± 1.6	0.36
31.2 ± 2.2	17.8 ± 5.3	< 0.0001
2.5 ± 0.1	1.3 ± 0.3	< 0.0001
4.9 ± 0.5	3.8 ± 1.1	< 0.0001
0.5 ± 0.08	0.4 ± 0.2	0.04
1.4 ± 0.3	1.9 ± 0.7	< 0.0001
1.5 ± 0.2	2.2 ± 0.5	0.2657
Ι.		

