

Effect of corn stover silages inoculated with effective microorganisms (EM®) on digestibility of sheep

Pérez P. M., Márquez M. C. C., Romero P. A., Avilés N. J., Corona L.*

Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia. Mexico City.

- The annual availability of corn stover (CS) is approximately 25.5 and 75 million tons in Mexico and USA respectively.
- The CS contains > 46% of ADF, 70% NDF and low digestibility (less than 55%), the availability of nutrients and energy is very low.
- The sugar cane molasse (SCM) and acid milk whey (AMW) are agroindustrial by-products sources of carbohydrates widely used in animal feeding.
- The effective microorganisms (EM[®]) is a mixture of Lactobacillus spp., Actinomycetes, Rhodopseudomona palustris and Saccharomyces cerevisiae which have shown the capacity of degrade organic matter and in a previous study we observed increase (P < 0.05, 11%) in the in vitro dry matter degradation of CS adding 1mL/kg of EM[®].

INTRODUCTION

• We hypothesized that inoculation with EM in the silage process of corn stover could improve the in vivo digestibility and ruminal fermentation in sheep

MATERIAL AND METHODS

- Treatments: Silages were made in plastic containers (150kg), 30 days of fermentation (Table 1 shown the composition). ME® (EM México), was adding at 1 ml/kg feed (dry matter).
- Animals: Six male sheep with canula in the rumen were used in a 6×6 Latin square design. Each period had 11d for adaptation to the diet followed by 5d for sample collection. Were taken samples of feces and ruminal content and feed for analysis.
- The sheep were housed in a metabolic cages and feed twice a day with a diet consisted of concentrate (55% DM) and corn stover or corn stover silage (45% DM).
- Feed and feces were analyzed to determinate DM, OM, CP, NDF, ADF, GE. Ruminal content was analyzed to VFA, N-NH3, pH and methane (stoichiometry).
- The results were analyzed with PROC MIXED
 procedures of SAS.

Table 1. Composition of the silages

CS-AMW 88 3 15 0 0 CS-SCM 88 3 0 15 0 SIL-AMW 88 3 15 0 0	Identification
CS-SCM 88 3 0 15 0 SIL-AMW 88 3 15 0 0	CS-AMW
SIL-AMW 88 3 15 0 0	CS-SCM
	SIL-AMW
SIL-SCM 88 3 0 15 0	SIL-SCM
SIL-AMW-EM 88 3 15 0 150	SIL-AMW-EM
SIL-SCM-EM 88 3 0 15 150	SIL-SCM-EM

"CS-AMW=Corn stover with acid milk whey, CS-SCM= Corn stover with sugar cane molasses, SIL-AMW= Corn stover silage with acid milk whey, SIL-SCM= Corn stover silage with sugar cane molasses, SIL-AMW=HM=Corn stover silage with acid milk whey and effective microorganisms and SIL-SCM-EM=Corn stover silage with sugar cane molasses and effective microorganisms. "Does of Effective Microorganisms at 1 mL/Kg mix feed

Table 3. Volatile fatty acids concentration, ammoniacal nitrogen, CH4 and pH of the ruminal liguor of the treated sheeps.

Treatments^a CS-AMW CS-SCM SIL-SIL-AMW-SIL-SCM-Ruminal SIL-AMW SCM FM EM SEM liquor Total VFA. mol/ml⁺ 125.47 124.01 112 79 109 97 101 94 103 67 3.25 Acetic, (%)bj 67.80 66.73 65.85 66.25 65 25 66.82 0.365 Propionic, (%) 21.63 23.32 23.18 22.4 24.2 22.25 0.414 Isobutiric, (%) 0.32 0.23 0.35 0.32 0.32 0.35 0.013 7.55 7.78 8.3 8.8 7.65 Butiric, (%)° 8.28 0.190 Isovaleric. (%)d 1.53 1.13 1.45 1.45 1.52 1.53 0.042 Valeric. (%)* 1.2 1.0 1.0 1.0 1.0 1.0 0.052 A:P ratio 3 14 2.97 2.86 2.98 2.73 3.02 0.062 N-NH3.ehi 5.82 6.21 13 98 7.08 9.13 16.55 1.36 nHfgl 5.90 5.70 6.03 5.73 5.88 5.95 0.034 *CH₄, g/day 445.87 436.89 432.79 442.29 419.55 442.92 4.44

^aTreatments: (Table 1) ^b CS-AMW VS SIL-AMW (P< 0.10) ^c CS-CM VS SIL-CM (P< 0.10)

CS-CM VS SIL-CM (P< 0.05)

CS-AMW VS SIL-AMW (P< 0.05)
 SIL-AMW VS SIL-AMW-EM (P< 0.10)

« SIL-CM VS SIL-CM-EM (P< 0.05)

* SIL-CM VS SIL-CM-EM (P< 0.01)

CS-AMW AND CS-OW VS SIL-AMW AND SIL-OM AND SIL-AMW-EM AND SIL-OM-EM (P-0.01) (CS-AMW AND CS-OW VS SIL-AMW AND SIL-OM AND SIL-AMW-EM AND SIL-OM-EM (P-0.10) (CS-AMW AND CS-OW VS SIL-AMW AND SIL-OM AND SIL-AMW-EM AND SIL-OM-EM (P-0.05) * Methane was estimated using stoichiometry

Table 2. Composition of the diets of corn stover silages with sugar cane m	olasses
or acid milk whey, urea and EM® used in the <i>in vivo</i> test on cannulated sl	neeps.

fermentation.

OBJECTIVE

Evaluate the effect of corn stover silages,

with two sources of energy (cane molasses

or milk whey) and EM (1effective

microorganisms, 1 mL/kg DM), on the

digestibility of nutrients and rumen

	l reatments"						
Components	CS- AMW	CS- SCM	SIL-AMW	SIL-SCM	SIL-AMW- EM	SIL-SCM- EM	SEM
Dry matter, %	28.33	28.33	28.17	31.5	29.33	27.83	0.45
Organic matter, %	85.79	86.52	87.69	86.75	87.01	84.48	0.26
Crude protein, %	11.45 ^{ab}	9.53 ^b	12.49 ^{ab}	11.77±	14.31ª	13.54 ^a	0.38
Gross energy, Mcal/kgDM	4.02	3.99	3.96	4	3.95	3.97	0.02
Acid detergent fiber, %	44.01	40.42	42.01	41.91	42.31	40.26	0.67
Neutro detergent fiber, %	67.33	63.90	63.65	62.43	63.58	60.99	0.87

*Treatments: (Table 1)

 $^{\rm a,b}$ Different letters superscripts in the same row are different (P <0.05) SEM= Standard error of the mean

Table 4. Effect of EM® in corn stover silages with molasses or acid milk whey and urea on the digestibility of cannulated sheeps.

	Treatments*							
ariable	CS-AMW	CS-SCM	SIL-AMW	SIL-SCM	SIL-AMW- EM	SIL-SCM- EM	SEM	
	6	6	6	6	6	6		
ntake, g/day								
DM	1,098	1,103	1,120	1,168	1,126	1,090		
OM	1,046	1,052	1,070	1,116	1,072	1,033		
NDF	394.33	382.83	383.83	395.50	386.00	364.67		
ADF	254.17	239.83	248.83	262.17	250.83	237.50		
N	17.3	16.2	18.6	19	20	18.8		
GE	4.81	4.81	4.89	5.11	4.90	4.75		
xcretion, g/day								
DMbe	298.83	281.67	257.17	290.50	297.33	287.83	13.19	
OMer	264.17	249 83	230 17	259.33	264.50	253 83	12 12	
NDE	179.67	169.67	160.83	178.00	178.67	163.83	8.64	
ADE	108 50	109 17	98 33	110 50	109 17	103 33	5 32	
N	5.66	5.50	5.16	5.83	5.83	5.66	0.44	
GE	1.24	1.17	1.09	1.23	1.25	1.19	0.057	
otal digestibilit	ty							
n tract, %								
DMb	72.78	74.23	77.03	75.02	73.83	73.45	0.92	
OM⁵	74.80	76.02	78.53	76.69	75.62	75.32	0.87	
NDF	54.24	55.13	58.26	54.20	54.14	54.00	1.96	
ADE	56.97	53.66	60.66	57.10	56.96	54.66	2.00	
N	67.34	64.82	71.80	68,18	71.21	69.93	1.30	
DE, Mcal/Kg dh	3.06	3.15	3.20	3.32	3.19	3.28	0.47	

Tretments: (Table 1) *Cs-AMW (VS SL-AMW (P-0.05) *Cs-AMW (VS SL-AMW (P-0.00) *SL-AMW-SL (P-0.10) *SL-AMW-SL (P-0.00) *SL-AMW-SL (P-0.00) *SL-AMW-SL (P-0.00) *SL-AMW-SL (P-0.00) *SL-AMW-SL (P-0.00)

RESULTS

- The inoculation of corn stover silages with EM increased (P < 0.05) the content of CP in both sources of carbohydrates respect the corn stover without silage with molasses (Table 2).
- The use of the silages with EM and molasses increased (P < 0.05) the concentration of N-NH3 and rumen pH (Table 3) but no effect was observed for digestibility (Table 4).
- The silage with acid milk whey improved (5.8%, P < 0.05) the OM digestion compared with corn stover without silage.

CONCLUSIONS

- The use of Effective microorganisms (EM) improve the CP content in CSS with AMW or SCM
- The use of EM in combination with SCM increased the amoniacal nitrogen content and decreased the pH with AMW
- A diet with 45% corn stover silage with EM was not sufficient to improve in vivo digestibility of nutrients in sheep.

Acknowledgements The project was supported by UNAM, DGAPA, PAPIIT (IT202120)