

Ultrasonography and bacterial community of naturally occurring liver abscesses and non-abscessed livers in finishing Holstein steers

Stotz, M. K. and W. L. Crossland

	Liver score for performance data		Liver Scoring System		
	Number	Score definition	0	No abscess or scars	
	0	Normal liver	S	Inactive scar	
			A-	1 or 2 small abscess	
	1	S or A- inactive	А	1 or 2 large abscesses or several small abscesses	
	2	2A or A- active3A+ or A++			
			A+	Multiple large abscesses	
	3		A++	Multiple large abscesses + adhesions	

Bootstrap

Non-metric MDS

2D Stress: 0.06 Severit

🔺 A+

🗕 A++

0

A-

+ S

A av:A

▼ av:A++

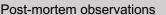
av:0

♦ av:A

• av:A-

+ av:S

Background & Objectives


Background

- Liver abscesses persist in feedlot cattle representing a financial burden to both preand post-mortem sectors of the beef industry.
- Severity has been previously identified as the driving force behind feeding performance reduction.
- Relatively little is known about development and resolution of abscesses and the associated timeline and subsequent impact on performance Ultrasound methodology
- historically utilized to diagnose abscesses in live cattle but limitations to the technology exist
- Etiology of hepatic abscesses and healthy liver tissue could lead to further understanding of abscessation.

Objectives

- Monitor onset, duration, and resolution of hepatic abscesses via ultrasonography, to quantify their impact on performance.
- Investigate liver abscess severity classification and its impact on performance.
- Examine the etiology of both healthy and abscessed livers and determine community differences between severity class.

- Liver abscess scores (prevalence and severity; liver scoring system)
- 16s rDNA sequencing of purulent material or tissue from abscessed & nonabscessed livers.

Statistical analysis

Experimental Units

DOF = 188 days

Holstein steers (n = 56)

Initial Body weight = 384±13.5 kg

Final Body weight = 662±10.8 kg

Pre-mortem observations

Modeled DMI. ADG and G:F

Performance: Steers ranked within feedlot performance variables for 188 days on feed (DOF) and the final 48 DOF were compared with post-mortem liver score using the FREQ procedure of SAS

Materials & Methods

- Ultrasound: A contingency table for abscess detection by ultrasound versus harvest was used to evaluate ultrasound accuracy
- Bacterial Etiology: Continuous variables (a & ß diversity) were analyzed using the MIXED procedure of SAS. Fixed effect of abscessation (severity) and response variables including bacterial relative abundance with alpha and beta diversity metrics

Results

- Performance data for 188 d on trial found ADG and G:F were not affected but DMI tended to be lower for unaffected livers (P = 0.051; Figure 1 a-c). In the last 48 d DMI and ADG were no affected by severity but those with healthy livers had greater numerical G:F (P = 0.098; Figure 2 a-c).
- Ultrasound accuracy found technician could evaluate approximately 66% correctly. Incorrect calls could be attributed to other limitation factors outlined in Table 1. However, technology did provide several individual timelines which researchers linked to performance data (Figure 3 a-f & 4).
- Non-abscessed and scarred livers had greater OTU richness and evenness while severely abscessed livers had greater dominance (P<0.001: Figure 5 a-c). Beta diversity test indicate that 0 and S classifications have different bacterial communities than A, A+ and A++ liver scores upon bootstrapping data (Figures 6). Patterns for 10 most dominate Phyla within severity class are displayed in Figure 7

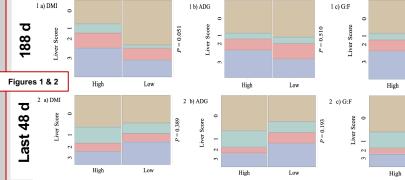


Figure 4

56 - 84

84 -112

Days on feed

113 - 140

Table 1. Concordance and characteristics of liver abscess detection by Ultrasound and at harvest

					_			
	Ultrasound/Harvest, n = 56							
	Concordant		Discordant		re 5			
	N/N	Y/Y	N/Y	Y/N	Figure			
Count	23	14	19	0				
Percent	41.1 %	25.0%	33.9%	0.00%				
Total	66.10%		33.90%					
	Discordant Characteristics, n = 19							
	A-	A+	A++	Total				
Active	5	3	2	10				
Inactive	7	0	2	9				
Total	12	3	4	19				
	Discordant Active Infection Location, n = 10							
	A-	A+	A++	Total				
Visceral	3	0	0	3				
Lateral	2	0	0	2				
Both	0	3	2	5				
Total	5	3	2	10				

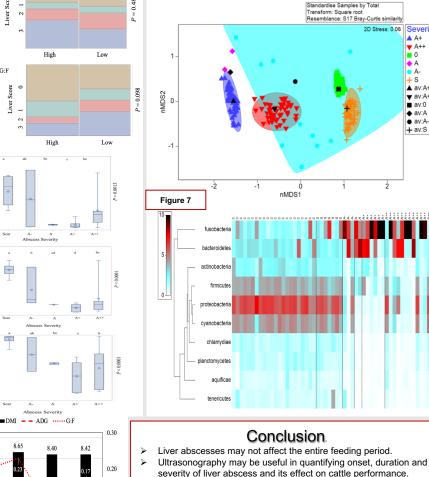


Figure 6

Clear community separation was observed between liver severity classes.

Acknowledgments Texas Cattel Feeders Association Brad Mitteness, CAMAS Inc., - product donation Matt Quinn, Feedlot Health Management Services & Bill Sleigh, Quality Beef Producers - cattle sourcing Scott Pohlman, Cargill Friona, TX - harvest coordination

