Protein concentrations in basal diets affect metabolizable energy of feed ingredients determined by difference procedure in pigs Hansol Kim*, Jung Yeol Sung, and Beob Gyun Kim Konkuk University, Republic of Korea

PSVII-36

Introduction

- The difference procedure is widely used to determine energy concentrations in feed ingredients (Kong and Adeola, 2014).
- assumption of the difference The procedure is that there is no interaction energy values in a test between ingredient and a basal diet.
- However, this assumption may be violated if urinary energy excretion is very large due to a high protein concentration in the basal diet, and subsequently, affects metabolizable energy (ME) of a test ingredient.
- The objective was to determine ME of feed ingredients using a low-protein basal diet (LPBD) and a high-protein diet (HPBD) based on the basal difference procedure.

Materials and Methods

ltom	L	PBD grou	qu		HPBD group				
item	LPBD	LPBD FFSB SPI			HPBD	FFSB	SPI		
Ingredient, %									
Ground corn	97.50	77.50	77.50		77.97	62.02	62.02		
Soybean meal	-	-	-		19.64	15.62	15.62		
FFSB	-	20.00	-		-	20.00	-		
SPI	-	-	20.00		-	-	20.00		
Others	2.50	2.50	2.50		2.39	2.36	2.36		
Analyzed composition									
GE, kcal/kg	3,705	4,015	3,991		3,800	4,087	4,063		
CP, %	7.4	12.8	22.8		14.3	18.9	28.4		

¹LPBD = low-protein basal diet; HPBD = high-protein basal diet.

²FFSB = full-fat soybean (37.7% CP); SPI = soy protein isolate (87.6% CP).

• Twelve barrows (73.7 ± 5.5 kg BW) were used.

• A replicated 6 × 3 Latin square with 6 diets (Table 1) and 3 periods and one additional replication was employed (n = 7).

Table 1. Ingredient and analyzed composition of diets¹

Period = 4-d adaptation + 4-d feces and urine collection

The marker-to-marker procedure was used.

PROC MIXED of SAS (SAS Inst. Inc., Cary, NC) was used.

Orthogonal contrasts were used to determine two main effect and interaction between the main effects.

Results

Table 2. Urinary gross energy (GE) output, digestible energy (DE) and metabolizable energy (ME) in pigs fed experimental diets (as-fed basis; n = 7)

Item

Urinary GE outp DE in diet, kcal/ ME in diet, kcal **ME/DE** ratio

^{a-d}Least squares means within a row without a common superscript differ (P < 0.05).

¹BD = LPBD group vs. HPBD group; TI = basal diet vs. FFSB vs. SPI; BD \times TI = an interaction between BD and TI.

ltem

DE, kcal/kg ME, kcal/kg ME/DE

Conclusion

output in pigs.

	LPBD group			HF	OEM	<i>P</i> -valu		
	LPBD	FFSB	SPI	HPBD	FFSB	SPI	SEIVI	BD
out, kcal/d	74	139	316	105	184	440	6	0.018
′kg	3,353	3,652	3,676	3,468	3,709	3,736	15	< 0.001
/kg	3,322 ^d	3,585 ^{ab}	3,537 ^b	3,418 ^c	3,633 ª	3,537 ^b	22	0.005
	0.991	0.982	0.962	0.986	0.980	0.947	0.004	0.014

Table 3. Energy concentrations in test ingredients (as-fed basis; n = 7)

LPBD group		HPBD	group	<u>Sem</u>	P -values for c	
FFSB	SPI	FFSB	SPI	SEIVI	BD	
4,947	5,067	4,756	4,876	53	0.004	(
4,756	4,517	4,565	4,111	84	0.004	(
0.961	0.891	0.960	0.843	0.014	0.099	<

As the protein in the basal diet increases, metabolizable energy in a test ingredient determined using the difference procedure decreases mainly due to greater urinary energy

Kong, C., and O. Adeola. 2014. Asian-Australas. J. Anim. Sci. 97: 917-925.

KONKUK

