1-Year Outcomes After Chronic Total Occlusion Percutaneous

Coronary Intervention According To Target Vessel: Insights From The PROGRESS-CTO Registry

From the PROGRESS-CTO Registry

<u>Ilias Nikolakopoulos MD</u>¹, Oleg Krestyaninov MD², Dmitrii Khelimskii MD², Jaikirshan J. Khatri MD³, Khaldoon K. Alaswad MD⁴, Anthony H. Doing MD⁵, Phil Dattilo MD⁵, Abdul M. Sheikh MD⁶, Catalin Toma MD⁷, Taral Patel MD⁸, Brian K. Jefferson MD⁸, Farouc A. Jaffer MD⁹, Raj H. Chandwaney MD¹⁰, William Jaber MD¹¹, Habib Samady MD¹¹, Alpesh Shah MD¹², Evangelia Vemmou MD¹, Iosif Xenogiannis MD¹, Bavana V. Rangan BDS, MPH¹, Santiago Garcia MD¹, Shuaib Abdullah MD¹³, Subhash

Banerjee MD¹³, M Nicholas Burke MD¹, Emmanouil S. Brilakis MD, PhD¹

1: Minneapolis Heart Institute Foundation and Minneapolis Heart Institute at Abbott Northwester Hospital, Minneapolis, MN, USA; 2: Meshalkin Novosibirsk Research Institute, Novosibirsk, Russia.; 3:Cleveland Clinic, Cleveland, Ohio; 4:Henry Ford Hospital, Detroit, Michigan; 5:Medical Center of the Rockies, Loveland, Colorado; 6: Wellstar Health System, Marietta, Georgia; 7:University of Pittsburgh Medical Center, Pittsburgh, PA; 8: Tristar Centennial Medical Center, Nashville, TN; 9:Massachusetts General Hospital, Boston, MA, USA; 10:Oklahoma Heart Institute, Tulsa, Oklahoma; 11: Emory University Hospital Midtown, Atlanta, GA; 12:Houston Methodist Hospital, Houston, Texas; 13:VA North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas;

BACKGROUND

Outcomes of Chronic Total Occlusion Percutaneous Coronary
Intervention (CTO PCI) according to target vessel have received limited study.

METHODS

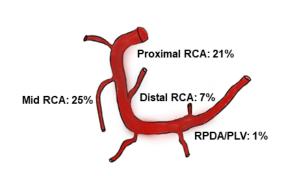
For our study, we compared clinical, angiographic, procedural characteristics and outcomes of 1,568 Right Coronary Artery (RCA), Left Anterior Descending Artery (LAD) and Left Circumflex (LCX) CTO PCIs with follow-up outcomes available.

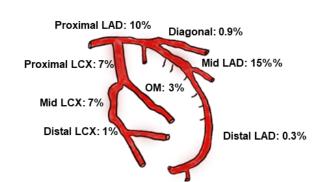
RESULTS

RCA was the most common target vessel, followed by the LAD and the circumflex artery (Figure 1). The median J-CTO score was 2 for LAD vs 3 for circumflex vs 3 for RCA lesions. The PROGRESS-CTO score was significantly higher in the circumflex group (Figure 2). The PROGRESS-COMPLICATIONS score was similar, with a median value of 3 in the LAD group, 2 in the circumflex group and 3 in the RCA group. Technical success was lower in RCA lesions (89% vs 85% vs 84%, p=0.05). In-hospital MACE (defined as death from any case, myocardial infarction, recurrent angina requiring urgent repeat revascularization [PCI, CABG], stroke or tamponade requiring pericardiocentesis or surgery) rates were similar (1.7% vs 2.4% vs 1.8% respectively, p=0.3). At 1 year of follow-up there was no significant difference in the composite endpoint of death, Myocardial Infarction (MI) and revascularization (15% in the LAD group vs 18% in the circumflex group vs 13% in the RCA group, plog-rank=0.16) (Figure 3).

CONCLUSION

- •RCA lesions are the most common
- •LCX lesions have higher PROGRESS-CTO score
- •Acute and 1-year outcomes do not differ significantly according to target vessel.

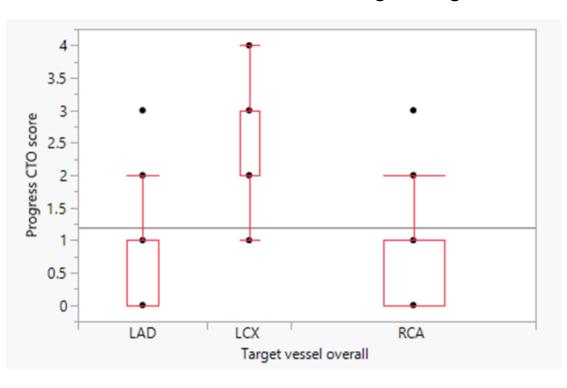

1-year outcomes after CTO PCI do not differ significantly according to target vessel.



For more information, go to www.progresscto.org or scan the QR code

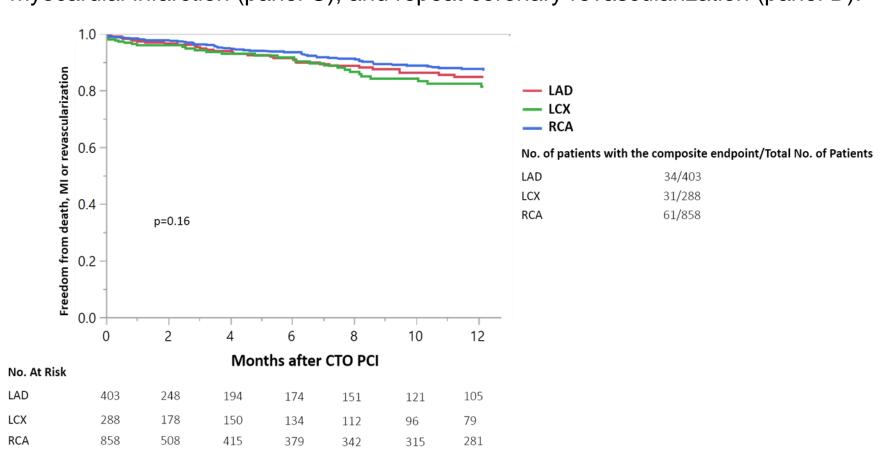
FIGURE 1

Most frequent target vessel segments in CTO PCI



CTO PCI, chronic total occlusion percutaneous coronary intervention; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery; RPDA, right posterior descending artery; PLV, posterior left ventricular artery

FIGURE 2


PROGRESS-CTO score according to target vessel

p<0.001

FIGURE 3

Incidence of the composite endpoint of death, MI and revascularization (panel A), death (panel B), myocardial infarction (panel C), and repeat coronary revascularization (panel D).

DISCLOSURE INFORMATION

Dr. Khatri: Asahi Intecc, Speaker/Proctor: Abbott Vascular; Dr. Yeh: career development award (1K23HL118138) from the National Heart, Lung, and Blood Institute; Dr. Jaffer: Consultant: Abbott Vascular, Boston Scientific, and Siemens. Research grant: Canon, Siemens and National Institutes of Health; Dr. Rangan: research grants from InfraReDx, Inc., and The Spectranetics Corporation; Dr. Banerjee: research grants from Gilead and the Medicines Company; consultant/speaker honoraria from Covidien and Medtronic; ownership in MDCARE Global (spouse); intellectual property in HygeiaTel; Dr. Garcia: consulting fees from Medtronic; Dr. Burke: consulting and speaker honoraria from Abbott Vascular and Boston Scientific.; Dr. Brilakis: consulting/speaker honoraria from Abbott Vascular, American Heart Association (associate editor Circulation), Boston Scientific, Cardiovascular Innovations Foundation (Board of Directors), CSI, Elsevier, GE Healthcare, InfraRedx, and Medtronic; research support from Regeneron and Siemens. Shareholder: MHI Ventures. Board of Trustees: Society of Cardiovascular Angiography and Interventions; Dr. Karmpaliotis: speaker honoraria: Abbott Vascular, Boston Scientific, Medtronic, Vascular Solutions.