

Influence of antibiotic use on the effectiveness and safety of immune checkpoint inhibitors in Japan.

Takuya Minamishima¹, Hirotake Hida¹, Shunsuke Kon¹, Koji Senzaki¹, Taku Nagai², Kiyofumi Yamada¹ ¹Department of Hospital Pharmacy, Nagoya University Hospital, ²Project Office for Neuropsychological Research Center, Fujita Health University

Abstract

Background

It has been reported that antibiotic use changes the gut microbiome and alters the outcome of treatment with immune checkpoint inhibitors (ICIs). However, in Asia, this has not been well studied, and there is insufficient evidence to support these reports.

Methods

In this study, we investigated the concurrent use of antibiotics and the administration of PD-1 inhibitors in Japanese patients, and examined the relationship between antibiotics and the clinical benefit or safety of PD-1 inhibitors.

Results

In total, 152 patients were analyzed: 60 patients received systemic antibiotics within 2 months before or 1 month after the first dose of PD-1 inhibitors (the antibiotic group: ATB); the remaining patients comprised the non-antibiotic group (non-ATB). There was a significantly higher proportion of patients under 65 years of age in ATB group. Median overall survival (OS) was not reached in the ATB and non-ATB groups, and there was no statistically significant difference between the two groups (HR = 1.48) (Figure 1). Progressionfree survival (PFS) was 3.29 months in the ATB group and was significantly shorter than that in the non-ATB group (5.99 months, HR = 1.75) (Figure 2). Multivariate analysis by Cox regression analysis also showed that PFS was shorter in the ATB group (HR=1.63). As age may be a confounding factor, we performed a stratified analysis, a common method used to adjust for bias. The results of the stratified log-rank test after adjustment for age showed that the PFS was significantly shorter in the ATB group. There were no statistically significant differences between the two groups in the clinical evaluation after 1 year, incidence of adverse events of Grade 3 or above, and laboratory data (Figure 5 and Table 3).

Conclusions

Our results suggest that the use of antibiotics may affect the anticancer treatment outcomes of Japanese patients who are administered PD-1 inhibitors.

Background

- to cancer immunotherapy.
- immunotherapeutic PD-1 blockade.^{1.-4.}

Methods

	Patients	Japanese pa pembrolizur Hospital fro
	Exclusion criteria	Not Japanes whose medi before the s performance
	Study design	A retrospec
	Ethical approval	Ethical revie

Results

Table 1. Baseline characteristics

	non-ATB n=92	ATB n=60	<i>p</i> value	
Median age [range]	71.2 [30-85]	63.1 [39-80]	<0.001 ^a	
<65 yr (n)	26	31	-0 01b	
≧65 yr (n)	66	29	<0.01	
Male (n)	64	43	0.857 ^b	
Female (n)	28	17		
PS=2 (n)	2	5	0.113 ^b	
PS=1 (n)	35	21	0.734 ^b	
PS=0 (n)	26	11	0.181 ^b	
PS not listed ($<$ 3) (n)	29	23	0.484 ^b	
Median BMI [range]	22.7 [13.0-34.7]	21 [14.7-31.1]	0.729 ^a	
BMI≧25 (n)	15	14	0.298 ^b	
BMI < 18.5 (n)	14	13	0.386 ^b	
Nivolumab (n)	68	48	0 221b	
Pembrolizumab (n)	24	12	0.331	
MM (n)	30	14	0.273 ^b	
NSCLC (n)	45	32	0.622 ^b	
RCC (n)	9	4	0.568 ^b	
GC (n)	4	2	1.000 ^b	
HNC (n)	4	8	0.064 ^b	
Median No. of previous anticancer regimens	1 [0-6]	1 [0-6]	0.645 ^a	

^a Mann-Whitney's U test, ^b Fisher's exact test ATB, the antibiotic group; non-ATB, the non-antibiotic group. MM, malignant melanoma; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; GC, gastric cancer; HNC, head and neck cancer.

Resident gut bacteria can affect patient responses

Previous studies have showed that antibiotic consumption is associated with poor response to

✓ It is not well studied in Japanese patients with gut bacteria unique to Japan that the use of antibiotics affect clinical outcomes of PD-1 inhibitors.

> atients treated with nivolumab or mab alone at Nagoya University om July 1, 2014 to February 28, 2019.

se, combination chemotherapy, ications are unknown up to 2 months start of treatment, or an ECOG e status of >2.

tive 1-year follow-up study.

ew committee of Nagoya University

Oxazolidinones

Metronidazole

Fisher's exact test

RECISTv1.1

CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease, ORR: overall response rate (CR+PR), DCR: disease control rate (CR+PR+SD)

NAGOYA UNIVERSITY HOSPITAL

65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan Tel: +81-52-744-2674, Fax: +81-52-744-2979 E-mail : pharmacy@med.nagoya-u.ac.jp

Corresponding author's email : minamishima@med.nagoya-u.ac.jp

Table 3. Adverse events

	non-ATB n=92		ATB n=60		<i>p</i> value	
	All Grade	Grade 3	All Grade	Grade 3	All Grade	Grade 3
ny adverse event	75	11	50	9	0.831	0.629
nfusion reaction	0	0	2	0	0.154	
atigue	26	0	17	0	1.000	
ching	25	1	13	1	0.566	
ash	27	3	11	0	0.179	
iarrhea	9	0	5	0	1.000	
ausea	7	0	3	0	0.741	
ecreased appetite	14	0	10	0	0.823	
oint pain	6	0	4	0	1.000	
luscle pain	6	0	2	0	0.480	
ever	10	0	13	0	0.104	
nemia	10	3	8	1	0.798	
neumonitis	9	1	10	3	0.221	
yperthyroidism	10	1	3	0	0.248	
ypothyroidism	17	0	9	0	0.663	
ypophysitis	4	3	2	0	1.000	
ype 1 DM	1	1	0	0	1.000	
Iyocarditis	0	0	1	1	0.395	
oint inflammation	0	0	2	0	0.154	
ncrease in AST level	12	0	14	4	0.124	
ncrease in ALT level	12	0	13	2	0.183	
ncrease in γ-GTP level	17	1	16	1	0.236	
ncrease in SCr level	7	0	5	0	1.000	
therwise	5	0	7	0	0.220	

CTCAE v4.0, Fisher's exact test

Conclusion

- ATB administration was associated with worse PFS even in Japanese patients.
- The response rate was tended to be higher in the non-ATB group.
- There was no significant difference in the number of episodes for adverse events of all Grade and Grade 3 or above.

More rigorous monitoring of proper antibiotic use is important for patients planning anti-PD-1 antibody therapy.

References

- **1.** Routy, B. et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. *Science* (80-.). 359, 91–97 (2018).
- Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science (80-.). 359, 97–103 (2018).
- Elkrief, A. et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology. 8, e1568812 (2019).
- Yang, M. et al., Antibiotic administration shortly before or after immunotherapy initiation is correlated with poor prognosis in solid cancer patients: An up-to-date systematic review and meta-analysis., International Immunopharmacology. 88:106876 (2020).