
Risks and Outcomes of Adenovirus Disease in Pediatric HSCT Recipients -Comparison of Current Antiviral Treatment Options

Introduction

- Adenovirus (ADV) infection in hematopoietic stem cell transplant (HSCT) recipients accounts for 22% of infection-associated mortality in pediatric umbilical cord transplant (UCT) recipients¹.
- ADV disease may present as upper respiratory infection, pharyngitis, conjunctivitis, meningoencephalitis, pneumonia, enteritis, myocarditis, hepatitis, and hemorrhagic cystitis².
- The current knowledge of the risk factors³ associated with worse clinical outcome and the effectiveness of antiviral therapy in pediatric HSCT recipients have not been well described.
- This study determined the relationship between transplant characteristics and risk of ADV disease and also compared time to resolution of disease between pediatric patients who did and did not receive antiviral therapy.

Methods

- Retrospective cohort study.
- Pediatric HSCT recipients between January 1, 2005 and December 31, 2016.
- We identified cases of single end-organ and disseminated ADV
- disease² (2 or more organs) using a classification tool defined *a priori*.
- **<u>Aim 1:</u>** Determined the association between transplant characteristics and the risk of ADV disease.
 - > Type of transplant: Allogeneic (non-cord) transplant (ALL), autologous transplant (AUT) and umbilical cord transplant (UCT). \succ Type of conditioning regimen: myeloablative or non-myeloablative.
- **<u>Aim 2:</u>** Compare clinical outcomes of ADV diseased patients who
- received antiviral therapy and those who did not. \succ Antiviral therapy: (1) intravenous cidofovir alone, (2) oral
- brincidofovir alone or (3) dual therapy with sequential intravenous cidofovir and oral brincidofovir.
- Statistical analysis: Time-varying cox proportional hazards regression model with robust sandwich estimate.

Sanya J. Thomas, MD¹, Rebecca R. Young, MS¹, William J. Steinbach, MD^{1,2}, Debra J. Lugo, MD^{1,2} ¹Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA

²Pediatric Immunocompromised Host Program, Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA

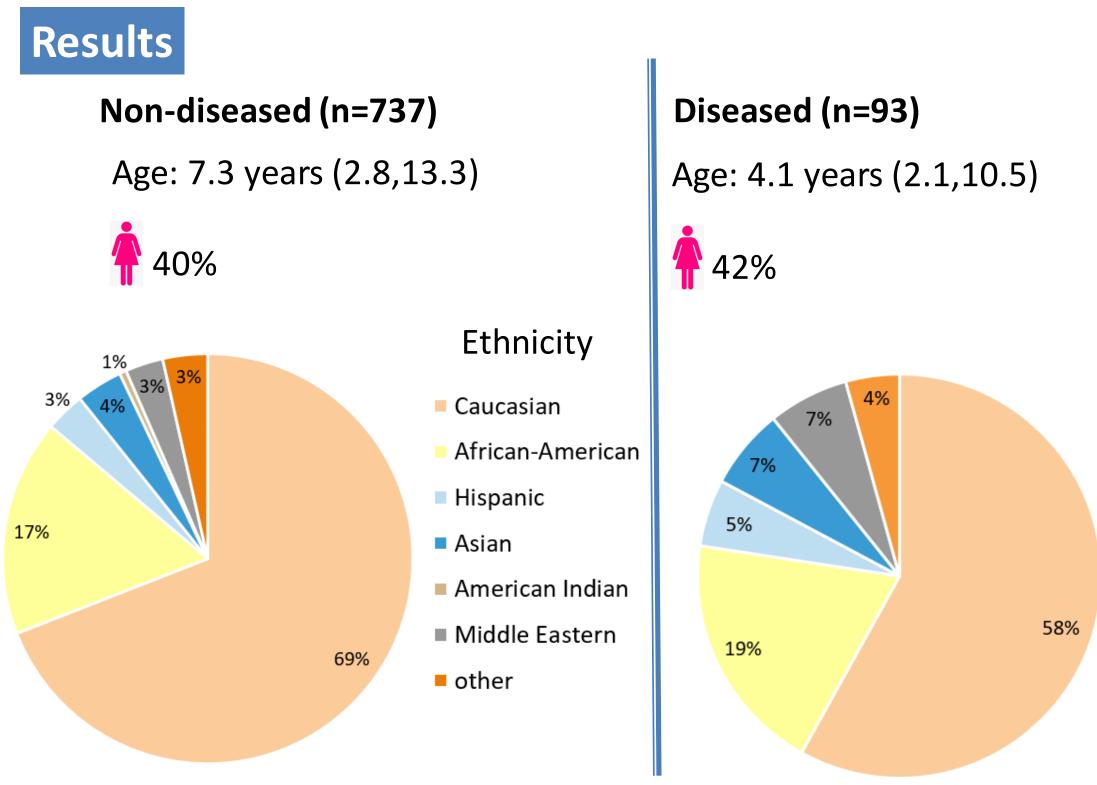
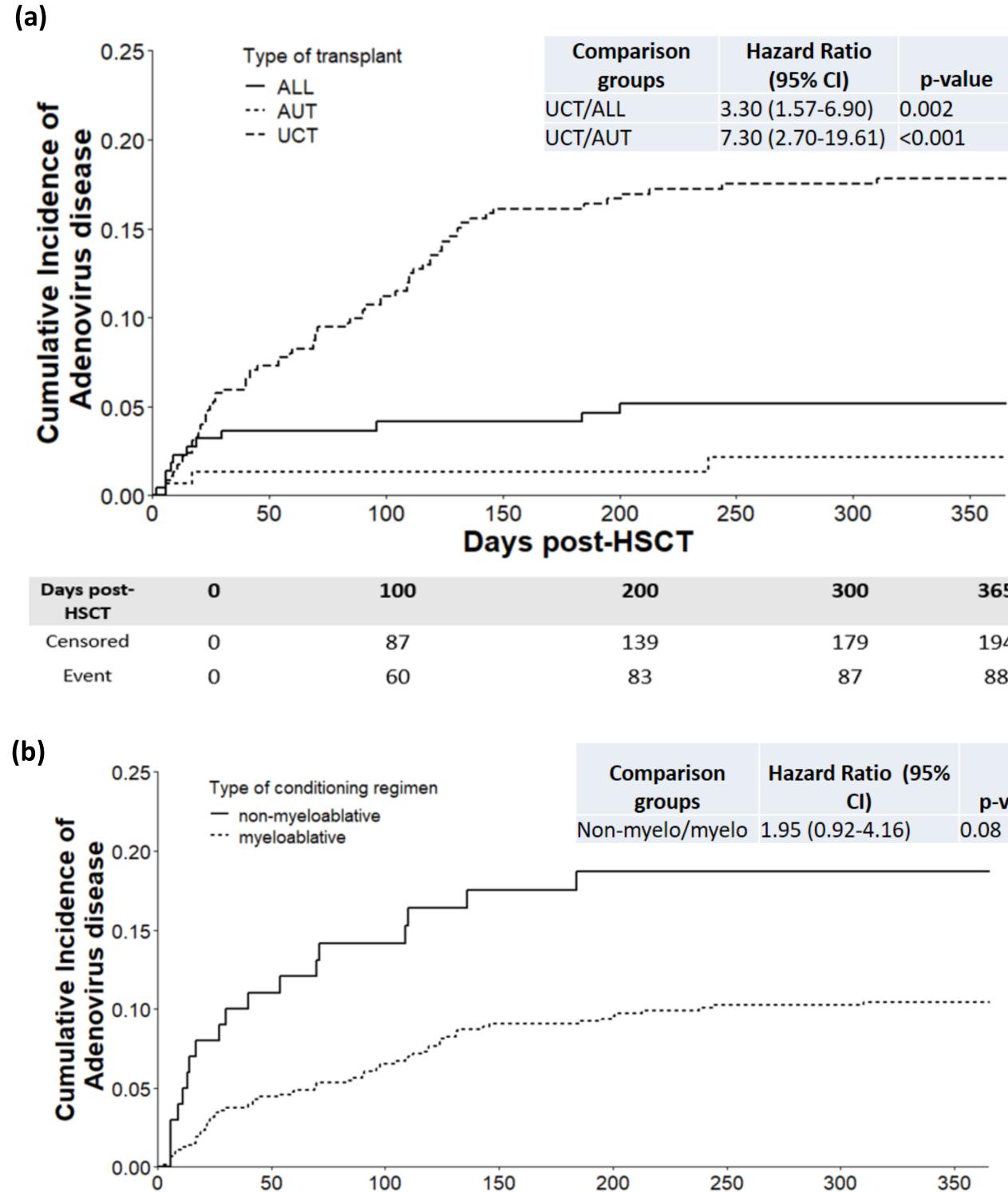



Figure 2. Characteristics of HSCT recipients (by transplants, n=830)

			Days post-HSCT			
	Days post- HSCT	0	100	200	300	
	Censored	0	87	139	179	
	Event	0	60	83	87	
um	ulative incidence	curves are not ac	ljusted for covariates. ALL, All	ogeneic (non-cord) transplan	ts; AUT, autolog	

stem cell transplants; UCT, umbilical cord transplants

Figure 3. Cumulative Incidence curve depicting cumulative incidence of adenovirus disease for the first year post-HSCT by (a) type of transplant and (b) conditioning regimen.

	Table 1. Characteristics of H (by transplants, n=830)	SCT reci	pients			• This is the first pediatric cohor
		Non-di	seased	Dis	eased	report risk factors and clinical
		(n)	(%)	(n)	(%)	of ADV disease, irrespective of
	> 1 HSCT	63	9%	10	11%	DNAemia.
						 UCT recipients have a higher h
Ethnicity	Type of HSCT					adenovirus disease compared
Lennercy	Autologous (AUT)	148	20%	3	3%	HSCT recipients.
Caucasian	Allogeneic non-cord (ALL)	206	28%	13	14%	 Contrary to previous reports st
African-American	Allogeneic cord (UCT)	383	52%	77	83%	ADV-DNAemia, our study note
						earlier resolution of ADV disea
Hispanic	Conditioning regimen					absence of antiviral therapy ev
Asian	Myeloablative	656	89%	73	78%	adjusted for disseminated dise
Middle Eastern	Non-myeloablative	81	11%	20	22%	
other						
	Primary diagnosis pre-transplant					Limitations
	Hematologic Malignancy	290	39%	30	32%	 Analysis regarding efficacy of a
30)	Hematologic Non-malignancy	112	15%	18	19%	therapy is limited by lack of sta
	Solid Tumor	128	17%	2	2%	dosing or duration of therapy.
	Genetic/Metabolic Disorder	126	17%	31	33%	 Our study does not account fo
	Immunodeficiency	79	11%	11	12%	function, lymphocyte count, ch
io	Other	2	0.3%	1	1%	immunosuppression during AE
p-value		242	220/	۸ ¬	F10/	and other co-morbidities such
0) 0.002	Mortality	242	33%	47	51%	
61) <0.001	Death within first year of	150		25	710/	host-disease that may limit the
	transplant (% of total mortality)	159	66%	35	74%	interpretation of the results fo resolution of disease.

Table 2. Hazard of	resolution of	disease by pres	sence or absence	of antiviral thera	ру.
Antiviral therapy	ROD (n=78) (n (%)) 14 (18)	No ROD (n=12) (n (%)) 10 (83)	Comparison groups Non-AT/AT	Hazard Ratio (95% CI) 3.75 (1.57-8.93)	p-valu 0.003
CID	5 (6)	8 (67)	, Non-AT/CID	, 10.53 (3.69-30.30)	
CMX	4 (5)	1 (8)	Non-AT/CMX	5.92 (1.23-28.57)	0.03
Dual AT	5 (6)	1 (8)	Non-AT/Dual AT	1.22 (0.36-4.20)	0.75
No antiviral therapy	64 (82)	2 (17)	REF	REF	

AT, antiviral therapy; CID, intravenous cidofovir; CMX, oral brincidofovir; Dual AT, dual antiviral therapy (intravenous cidofovir and oral brincidofovir); LFTs, transaminases; REF, reference group

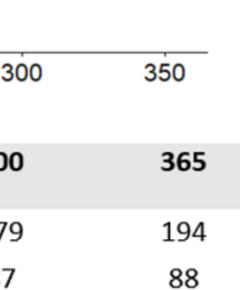
Future Directions

- effects against any potential benefit of antiviral therapy in the outcome of ADV disease post-HSCT.
- of T-cell reconstitution influencing ADV disease outcome.

Acknowledgements

This research is supported by the Children's Miracle Health Network grant. We thank the study participants and their families for their contribution to this research. We would also like to thank the members of the Clinical Epidemiology Research Group, Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine for their valuable feedback with this research study.

References


- 2002;100(5):1619-1627.

300	365
179	194
87	88

350

d Ratio (95%	
CI)	p-value
.92-4.16)	0.08

gous transplant; HSCT, hematopoietic

Duke University School of Medicine T915 Children's Health Center, DUMC Box 3499 Durham, NC 27710 Phone: 919.684.6335 Fax: 919.668.4859 Email address: sanya.thomas@duke.edu

 ADV disease should be considered on the differential diagnosis in the appropriate clinical scenario in UCT recipients. • Given the lack of earlier resolution of disease with antiviral therapy, providers should weigh the risk of adverse • Future directions for therapeutic management should focus on T-cell and NK cell based therapies to define the role

1. Spees LP, Martin PL, Kurtzberg J, et al. Reduction in Mortality after Umbilical Cord Blood Transplantation in Children Over a 20-Year Period (1995-2014). Biology of Blood and Marrow Transplantation. 2019;25(4):756-763. 2. Ison MG. Adenovirus Infections in Transplant Recipients. *Clinical Infectious Diseases* 2006;43(3):331–339. 3. Chakrabarti S, Mautner V, Osman H, et al. Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery. *Blood*.

Duke Department of Pediatrics

Duke Children's