

Development and Application of a Pragmatic Algorithm for the Detection of Carbapenemase-Producing Pseudomonas aeruginosa (CP-PA)

Christian M. Gill, PharmD^a, Tomefa E. Asempa, PharmD^a,

David P. Nicolau, PharmD, FCCP, FIDSA^{a,b}

^aCenter for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA; ^bDivision of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA

ABSTRACT

Background: Historically, carbapenem-resistance in P. aeruginosa (PA) has been mediated by inducible AmpC, drug efflux, and porin loss; however, carbapenemase production is an increasingly recognized entity. Of these mechanisms, carbapenemases can drastically reduce treatment options and rapidly disseminate. Since broad applications of phenotypic (mCIM/eCIM) and PCR-based detection can be labor intensive and costly, we developed an MIC derived algorithm to streamline use of these definitive carbapenemase detection methodologies.

Methods: To develop the testing criteria, a challenge set of PA (n=92), NDM, IMP, VIM, KPC, SPM, GES, cephalosporinase or efflux/porin mutation and wild-type isolates were utilized. Broth microdilution MICs were determined for: ceftazidime (CAZ), cefepime (FEP), piperacillin/tazobactam (TZP), meropenem (MEM), imipenem (IPM), ceftolozane/tazobactam (C/T), and ceftazidime/avibactam (CZA). To assess the utility of CAZ, FEP, TZP, and C/T screening criteria from the challenge set, 1.209 clinical PA isolates from a US surveillance program were tested. Confirmatory genotypic and phenotypic testing for evidence of carbapenemases was conducted on all criteria-derived isolates using the Xpert Carba-R assay and the modified carbapenem inactivation method (mCIM)/EDTA-modified carbapenem inactivation method (eCIM), respectively

Results: Test performance and characteristics of the challenge set are displayed in Table 1. Of the 1,209 clinical isolates, 230 (19%) were IPM and MEM resistant. 116 isolates met the defined criteria (using most common anti-oseudomonal β-lactams) of: IPM and MEM resistance: nonsusceptibility to CAZ, FEP, and TZP. Carba-R identified 5 carbapenemaseproducing isolates (all blaVIM-positive), while the mCIM/eCIM detected 7 carbapenemase-producing isolates (including the 5 blaVIM-positive isolates)

Conclusion: In the presence of carbapenem resistance, non-susceptibility to FEP, CAZ, and TZP (or C/T when available) is a useful starting point to delineate CP-PA versus non-CP-PA. This MIC criterion combined with either mCIM/eCIM or PCR-based testing is a pragmatic and streamlined approach to identify CP-PA, while providing vital information to guide therapeutic and infection control measures.

INTRODUCTION

- Carbapenem-resistant P. aeruginosa are a notable clinical challenge both in the US and abroad.¹
- Carbapenem resistance in *P. aeruginosa* in the US is typically mediated by efflux/porin loss and over-expression of cephalosporinases although carbapenemases have been detected including in outbreaks.²
- Detection of carbapenemase-producing *P. aeruginosa* is imperative as it is associated with nosocomial spread and limited treatment options.3
- Broad applications of phenotypic (mCIM/eCIM) and PCR-based detection for carbapenem resistant *P. aeruginosa* can be labor intensive and costly.
- A pragmatic algorithm using accessible phenotypic profiles (i.e., MICs) may help guide directed carbapenemase testing.

OBJECTIVE

Antibiotic abbreviations

- 1) To develop a phenotypic algorithm to guide definitive carbapenemase testing using a challenge set of P. aeruginosa including: carbapenemase-producing, carbapenemase-negative, carbapenem-resistant P. aeruginosa, and wild-type P. aeruginosa.
- 2) Apply the derived testing criteria to a US, multicenter surveillance program to identify carbapenemase-producing P. aeruginosa.

METHODS

P. aeruginosa Challenge Set

- The challenge set comprised of 92 P. aeruginosa isolates
- Isolates included NDM-, IMP-, VIM-, KPC-, SPM-, and GES-positive strains.
- Twenty isolates were carbapenemase negative with documented cephalosporinase/efflux mutations to serve as negative controls
- Seven wild-type strains were included in the challenge set as additional negative controls

Phenotypic MIC Determination

- Broth microdilution MICs were determined for ceftazidime, cefepime, piperacillin/tazobactam, meropenem, imipenem, ceftolozane/tazobactam, and ceftazidime/avibactam per CLSI standards.⁴
- The phenotypic profile was used to compare different algorithm testing criteria to capture the highest number of carbapenemase-producing strains while minimizing the number non-carbapenemase strains selected.

Data Analysis

Sensitivity and specificity was calculated for various testing criteria to compare how well each criteria performed within the challenge set.

Application of Algorithm to a US Surveillance Study

- The derived algorithm was applied to clinical P. aeruginosa isolates from a multicenter, US surveillance study, n = 1,209⁵
- MICs were determined using broth microdilution per CLSI methodology⁴
- Isolates meeting the algorithm testing criteria were selected to undergo phenotypic (mCIM/eCIM) and genotypic (Xpert® Carba-R) carbapenemase testing.

Modified Carbapenem Inactivation Method/ EDTA-Modified Carbapenem inactivation method (mCIM/eCIM)

- · mCIM testing was conducted as outlined in CLSI M100 4
- eCIM testing was conducted simultaneous to mCIM as previously described.6
- Four quality control strains were included with each mCIM/eCIM run: two negative controls (K. pneumonia ATCC 1706 and P. aeruginosa ATCC 27853), one serine-carbapenemase control (K. pneumoniae ATCC 1705, KPC-positive), and a Metallo-β-lactamase positive control (K. pneumoniae CDC Bank #505, NDMpositive).

Cepheid Carba-R Testing

- Testing using the Xpert[®] Carba-R assay was conducted at the Center for Anti-Infective Research and Development per the package insert.⁷
- Quality control was conducted weekly using the Xpert® Carba-R QC Panel (Maine Molecular)

Whole Genome Sequencing

 Any isolate with discordant results between mCIM/eCIM and Carba-R assay underwent whole-genome sequencing (WGS).

	_			_
	ГС		L 75	C
R	г.э	UJI		
	_	-	_	-

able	1	Characteristics	of the	Challongo	Set of 02 P	aoruginosa	icolatoc	utilizadi
aple	н.	Characteristics	OI LITE	e Challenge	Set of 92 P.	aeruginosa	isolales	uuiizea

	Carbapenemase Producers, n = 57	Non-Carbapenemase P	roducers,	Test Performance	
Susceptibility Criteria		Cephalosporinase or Efflux/Porin Mutation, n = 20	Wild Type, n = 15	Sensitivity % (95% CI)	Specificity % (95% Cl)
IPM + MEM- R	57 (100%)	15 (75%)	1 (7%)	100% (94–100%)	54% (37–71%)
PM + MEM- R AND FEP + CAZ + TZP- NS	57 (100%)	12 (60%)	0 (0%)	100% (94–100%)	66% (48–81%)
IPM + MEM- R AND FEP + CAZ + TZP- R	47 (82%)	6 (30%)	0 (0%)	83% (70–91%)	83% (66–93%)
IPM + MEM- R AND FEP + CAZ + TZP- NS + CZA- R	49 (86%)	8 (40%)	0 (0%)	86% (74–94%)	77% (60–90%)
IPM + MEM- R AND FEP + CAZ + TZP- NS + C/T- R	57 (100%)	4 (20%)	0 (0%)	100% (94–100%)	89% (73–97%)
IPM + MEM- R AND FEP + CAZ + TZP- NS + C/T- R+ CZA- R	49 (86%)	3 (15%)	0 (0%)	86% (74–94%)	91% (77–98%)

Derivation of Phenotypic Screening Criteria in the Challenge Set

- Piperacillin/tazobactam-resistance decreased the test performance because 10 carbapenemase producers resulted with intermediate MICs.
- The test performance of ceftazidime/avibactam-resistance was contingent on carbapenemase epidemiology as some classes (i.e., KPCand some GES-) may be susceptible.
- Since ceftolozane/tazobactam and ceftazidime/avibactam MICs may be delayed or unavailable, the algorithm base used imipenem and meropenem-resistant AND ceftazidime, cefepime, and piperacillin/tazobactam- non-susceptible as the starting criteria (Figure 1).

Figure 1. Algorithm for carbapenemase detection in Pseudomonas aeruginosa.

IPM = imipenem; MEM = meropenem; CAZ = ceftazidime; FEP = cefepime; TZP = piperacillin/tazobactam; C/T = ceftolozane/tazobactam: CZA = ceftazidime/avibactam: R = resistant: NS = non-susceptible

in algorithm development

Table 2. Application to 1,209 clinical *P. aeruginosa* isolates from a US surveillance study.

Algorithm-Derived Screening Criteria	Number Meeting Criteria	Carbapenemase Producers Detected	Carbapenemase Producers Missed By Criteria
IPM + MEM- R AND FEP + CAZ + TZP- NS	116	7/116	0
IPM + MEM- R AND FEP + CAZ + TZP- NS + CZA- R	43	7/43	0
IPM + MEM- R AND FEP + CAZ + TZP- NS + C/T- R	21	6/21	1*
IPM + MEM- R AND FEP + CAZ + TZP- NS + C/T- R + CZA-R	19	6/19	1*

*Isolate harbored OXA-2, OXA-50

Carbapenemases Detected from Multicenter US Surveillance Program

- The Xpert Carba-R detected five carbapenemase harboring strains all harboring blaVIM. mCIM/eCIM testing confirmed all five blaVIM-positive strains and detected two additional
- isolates that were mCIM-positive and eCIM-negative suggesting a non-metallo-β-lactamases that are outside the current Carba-R targets.
 - Whole genome-sequencing revealed one isolate that was GES-20-positive, a known carbapenemase, while the second was OXA-2, OXA-50 positive but lacking a known carbapenemase.

DISCUSSION/CONCLUSIONS

- Imipenem and meropenem-resistance alone poorly predicted carbapenemase activity in the challenge set (Table 1).
- Addition of ceftazidime, cefepime, and piperacillin/tazobactam-non-susceptibility improved the test performance and was used as the base of the phenotypic algorithm (Table 1 and Figure 1).
- Test performance is further enhanced by introducing ceftolozane/tazobactam and ceftazidime/avibactam-resistance (Table 1 and Table 2).
- Application of the testing criteria using the genotypic and phenotypic detected five VIM positive strains, one GES-positive strain, and one strain without known carbapenemase production
- Application of this phenotypic algorithm may be a more targeted approach to carbapenemase testing in P. aeruginosa but further validation is needed.

ACKNOWLEDGMENTS

- . The authors thank Courtney Bouchard, Janice Cunningham, Nicole DeRosa, Lauren McLellan, Alissa Padgett, Debora Santini, Jennifer Tabor-Rennie, Rebecca Stewart, Charlie Cote, Max Lasko, Elizabeth Martin, and Christina Sutherland from the Center for Anti-Infective Research and Development for their assistance with the conduct of this study.
- The Xpert® Carba-R was provided by Cepheid, Sunnyvale, CA., USA
- All other funds and resources were provided by the Center for Anti-Infective Research and Development, Hartford Hospital

REFERENCES

- Clin Infect Dis. 2020; DOI: 10.1093/cid/ciaa122.
- Clin Microbiol Rev. 2009: 22:582-610.
- Clin Infect Dis. 2019;69:S512-28.
- CLSI M100. 29th edition. 2019.
- J Thor Dis. 2019:11: 1896-1902
- J Clin Microbiol. 2020; 26: e02015-19.
- 7. Xpert Carba-R. Package Insert. Cepheid, Sunnyvale, CA.

