Association Between Cytomegalovirus Infection/Disease and Morbidity and Mortality in Kidney Transplantation: A Systematic Literature Review of Observational Studies

Introduction

- Cytomegalovirus (CMV) is the most common viral infection post-transplant among kidney transplantation recipients (KTR), affecting as high as 82% of KTRs without any preventive approach and up to 54% even with preventive antiviral agent use¹
- Literature suggests that CMV infection/disease may increase the risk of opportunistic infections due to its immunomodulatory actions. In addition, replication of CMV may lead to immunoactivation, leading to increased risk for acute or chronic rejection. Collectively, CMV infection/disease may lead to an increase in mortality and morbidity²
- The extent to which CMV affects morbidity, such as acute rejection, graft loss, or other opportunistic infections, or mortality in KTRs has not been evaluated using a systematic review framework

Objective

• To examine the association between CMV infection/disease and indirect outcomes (related to mortality and morbidity) among KTRs using a systematic review of observational studies

Methods

- This systematic literature review (SLR) was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines³
- Criteria for Study Selection and Literature Search
- Inclusion criteria: Retrospective or prospective cohort, case-control observational studies with adults aged ≥18 years and single-organ kidney transplant recipients with defined CMV serostatus
- Exclusion criteria: Studies reporting CMV infection/disease without information on CMV status of donor and recipients for the study population; no report on CMV antiviral treatment approach; with ABO-incompatible donors, HLA mismatch donors, or human immunodeficiency virus; participants undergoing multiple transplant procedures
- Primary outcomes: Indirect outcomes
- -All-cause mortality
- -Graft outcomes: Acute rejection, graft loss, decline in renal function
- -Opportunistic infections
- -Hospitalizations and cost
- Literature Search

 Medline and EMBASE were searched to identify relevant studies published between January 2008 and November 2018, without any geographic restriction

Data Screening and Extraction

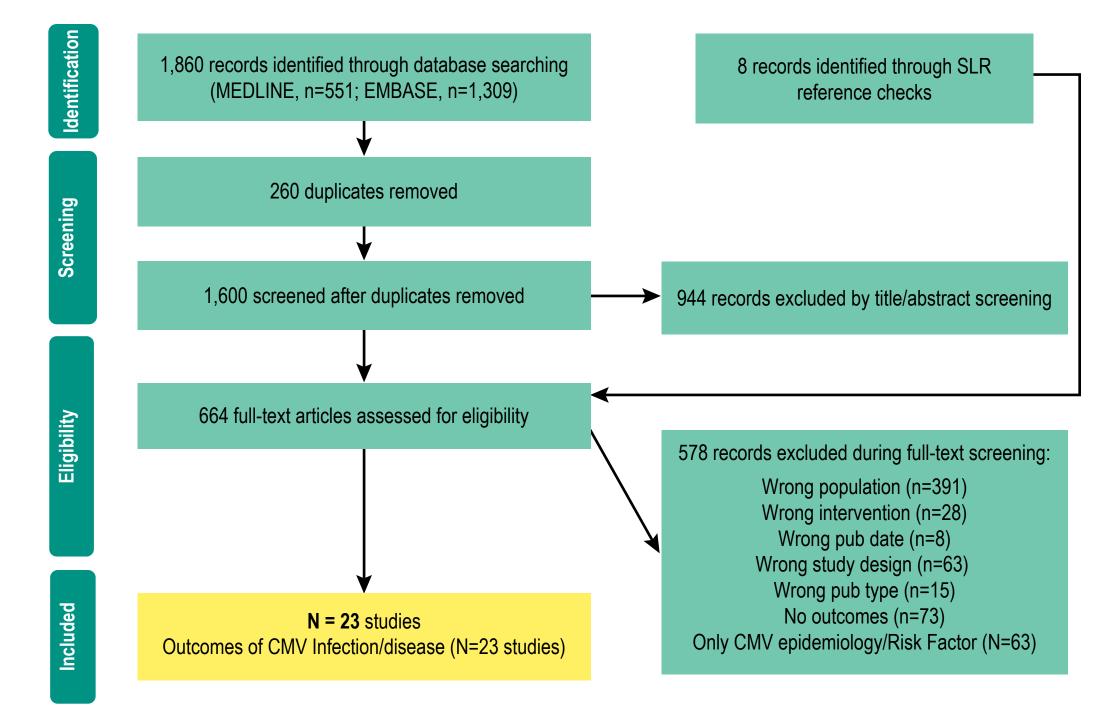
- Titles and abstracts of studies were screened for eligibility; subsequently, full-text article screening was performed to confirm inclusion of eligible publications during abstract screening
- Relevant data from included studies on baseline characteristics, CMV treatment, and outcomes were extracted into a data extraction template

Statistical Analysis

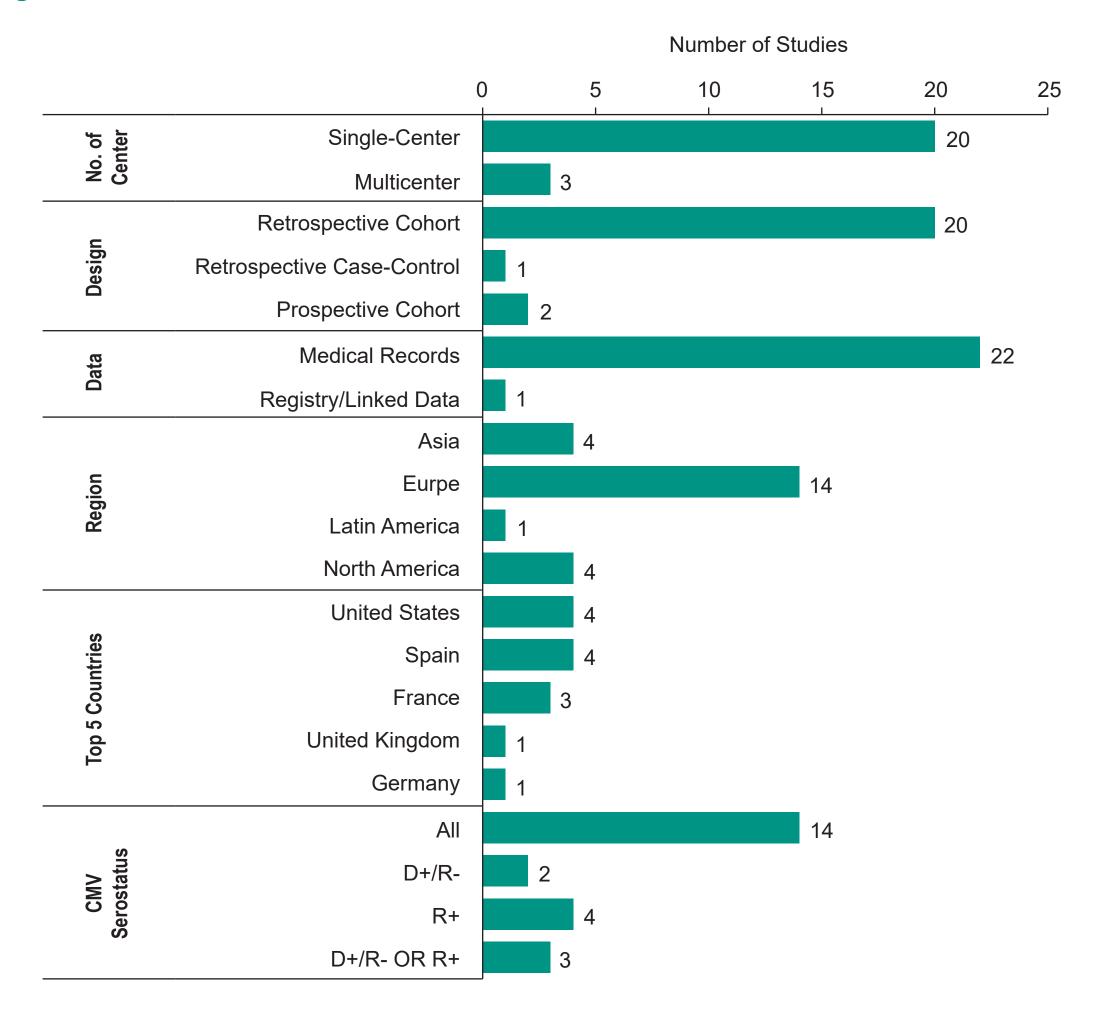
• All analyses were carried out in R Foundation for Statistical Computing, Vienna, Austria (version 3.5.1), using the "meta" packages

Results

• Of 1,860 retrieved citations, 23 studies with a total of 6,994 KTRs met inclusion criteria (Figure 1) **Participant Characteristics**

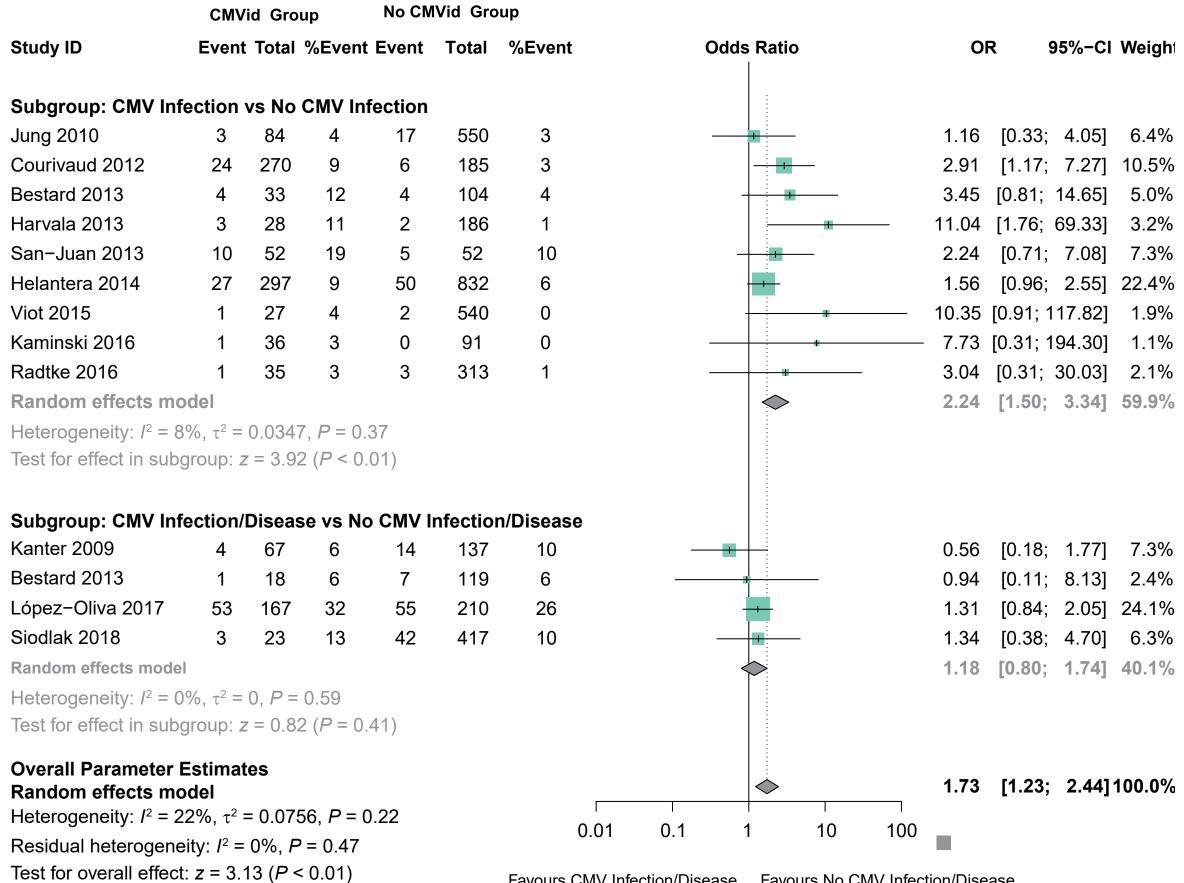

- Sample size in the included studies varied widely, with a mean of 304 participants per included study
- The majority of studies were retrospective cohort (N=20), were conducted in Europe (N=14), and included participants regardless of donor/recipient CMV serostatus (N=14) (Figure 2)

Indirect Effect of CMV Infection/Disease


- CMV infection/disease was also associated with increased odds of mortality (Figure 3) (pOR, 1.73; 95% CI, 1.23, 2.44; *P*-value <0.01; I²=22%; 12 studies; 4,873 KTRs) compared to the absence of CMV infection/disease, without significant heterogeneity (Figure 4)
- Those with CMV infection/disease were twice as likely to have graft loss (pOR, 1.59; 95% CI, 1.13, 2.23; *P*-value <0.01; I²=22%; 11 studies; 3,528 KTRs) without significant heterogeneity and acute rejection (pOR, 2.40; 95% CI, 1.69, 3.40; *P*-value <0.01; I²=69%; 14 studies; 3,532 KTRs) as compared to those without CMV infection/disease (Figure 5), albeit with significant heterogeneity

- Three studies reported estimated glomerular filtration rate (eGFR). All of them reported that lower mean eGFR was found among those with CMV infection/disease compared to those without CMV infection
- In the four studies with reported outcomes on serum creatinine level, mixed findings were observed with respect to CMV infection/disease
- A single study reported a greater mean number of opportunistic infection episodes with CMV infection/disease; also, a single study reported that a higher proportion of individuals with CMV disease (88%) had all-cause hospital readmissions compared to those with CMV infection (50%) or without CMV infection/disease (51%)
- None of the included studies examined healthcare cost by CMV infection/disease in KT recipients

Figure 1. PRISMA Flow Diagram for Study Selection


Figure 2. Characteristics of Included Studies

Amit D. Raval, PhD¹; Kristin Kistler, PhD²; Yuexin Tang, PhD¹; Yoshihiko Murata, MD, PhD¹; David R. Snydman, MD³

³Tufts Medical Center, Boston, MA, USA

Figure 3. Forest Plot on Pooled Odds Ratios With 95% Confidence Interval for All-Cause Mortality by CMV Infection/Disease

Favours CMV Infection/Disease Favours No CMV Infection/Disease

Figure 4. Forest Plot on Pooled Odds Ratios With 95% Confidence Interval for **Graft Loss by CMV Infection/Disease**

	CMVid Group		No C	MVid G	roup							
Study ID	Event	Total	%Event	Event	Total	%Event	Odds Ratio	OR	95%-CI	Weight		
Subgroup: CMV Infection/Disease vs No CMV Infection/Disease												
Kanter 2009	9	67	13	19	137	14		0.96	[0.41; 2.26]	11.6%		
Bal 2013	5	17	29	10	145	7		5.62	[1.65; 19.15]	6.5%		
López-Oliva 2017	53	167	32	55	210	26		1.31	[0.84; 2.05]	24.7%		
Siodlak 2018	6	23	26	75	417	18		1.61	[0.61; 4.22]	9.7%		
Random effects mo Heterogeneity: <i>I</i> ² = 44 Test for effect in subg	8%, τ ² :							1.59	[0.90; 2.80]	52.5%		
Subgroup: CMV Infe	ection	vs No	CMV In	fection								
Jung 2010	8	84	10	39	550	7		1.38	[0.62; 3.06]	12.8%		
Helantera 2011	3	18	17	7	44	16		1.06	[0.24; 4.64]	4.7%		
San-Juan 2013	8	52	15	3	52	6		2.97	[0.74; 11.90]	5.3%		
Radtke 2016	6	35	17	16	313	5		3.84	[1.39; 10.57]	8.9%		
Kaminski 2016	9	77	12	7	91	8		1.59	[0.56; 4.49]	8.6%		
Kir 2017	2	68	3	24	394	6		0.47	[0.11; 2.02]	4.8%		
Viot 2015	1	27	4	11	540	2		1.85	[0.23; 14.87]	2.5%		
								1.66	[1.03; 2.68]	47.5%		
Random effects mo Heterogeneity: $I^2 = 1$ Test for effect in subg	1%, τ ² :											
Random effects model Heterogeneity: $I^2 = 22\%$, $\tau^2 = 0.0690$, $P = 0.23$ Residual heterogeneity: $I^2 = 29\%$, $P = 0.18$ Test for overall effect: $z = 2.66$ ($P < 0.01$)						Favours C	0.1 0.5 1 2 10 MV Infection/Disease Favours No CMV Infec		[1.13; 2.23]	100.0%		

¹Merck & Co., Inc., Kenilworth, NJ, USA; ²Evidera, Inc., Waltham, MA, USA;

Figure 5. Forest Plot on Pooled Odds Ratios With 95% Confidence Interval for Acute Rejection by CMV Infection/Disease

	CMVid Group			No CMVid Group						
Study ID	Event	Total	%Event	Event	Total	%Event	Odds Ratio	OR	95%-CI	Weight
Cubana (CMV/ haf	1 /		N		-f					
Subgroup: CMV Inf								o - 0		0.00/
Kanter 2009	22	67	33	21	137	15		2.70	• • •	8.0%
McGee 2012	9	31	29	79	417	19		1.75	[0.78; 3.95]	7.2%
Bal 2013	7	17	41	16	145	11		- 5.64	[1.88; 16.90]	5.4%
Bestard 2013	3	18	17	15	119	13		1.39	[0.36; 5.36]	4.3%
Michelo 2015	14	39	36	13	51	25		1.64	[0.66; 4.06]	6.5%
López-Oliva 2017	35	167	21	34	210	16		1.37	[0.81; 2.32]	9.3%
Reusing 2018	27	54	50	89	369	24		3.15	[1.75; 5.64]	8.8%
Random effects mo	odel							2.17	[1.52; 3.10]	49.5%
Heterogeneity: $I^2 = 3$	2% , τ ² =	= 0.071	15, <i>P</i> = 0	.18						
Test for effect in subg	group: z	2 = 4.28	B(P < 0.0)	01)						
Subgroup: CMV Inf	ection	vs No (CMV Inf	ection						
Christmas 2009	10	21	48	4	15	27		2.50	[0.60; 10.44]	4.0%
Jung 2010	83	196	42	91	374	24		2.28	[1.58; 3.30]	10.3%
Helantera 2011	5	18	28	6	44	14		2.44	[0.64; 9.34]	4.3%
Bestard 2013	6	33	18	11	104	11		1.88	[0.64; 5.55]	5.5%
Smedbråten 2014	219	296	74	46	175	26		7.98	[5.21; 12.20]	10.0%
Vu 2014	21	52	40	49	195	25		2.02	[1.06; 3.83]	8.4%
Kaminski 2016	23	77	30	22	91	24		1.34	[0.67; 2.65]	8.1%
Random effects mo	odel							2.56	[1.43; 4.59]	50.5%
Heterogeneity: $I^2 = 8$	$0\%, \tau^2 =$	= 0.437	73, <i>P</i> < 0	.01						
Test for effect in sub	group: z	z = 3.16	6 (P < 0.0)	01)						
Overall Parameter E	Estimat	es								
Random effects mo								2.40	[1.69; 3.40]	100.0%
Heterogeneity: <i>I</i> ² = 6	9%, τ² =	= 0.273	3, <i>P</i> < 0	.01						
Residual heterogene	ity: /² =	69%, <i>I</i>	- < 0.01				0.1 0.5 1 2 10			
Test for overall effect	: z = 4.8	39 (<i>P</i> <	0.01)			Fovouro	MV Infection/Disease Favours No CMV Infe	otion/Di	20220	

Favours CMV Infection/Disease Favours No CMV Infection/Disease

Discussion

- Our study aimed to understand the association between CMV infection/disease and mortality/ morbidity outcomes using data of 23 observational cohort studies
- We found a positive association between CMV infection/disease and mortality and graft loss without heterogeneity between studies
- The association between CMV and acute rejection were similar in direction but with high heterogeneity, limiting the robustness of the conclusion
- To our knowledge, this is the first systematic review of the largest number of included observational studies published across the globe to summarize epidemiological association between CMV infection/disease and indirect outcomes in KT recipients
- Reported data on the association between opportunistic infections or kidney function and CMV infection/disease were limited. Because antiviral dose changes are often done in response to renal function indicators, evaluating the association between CMV infection/disease or prevention strategies and renal function in real-world data is complicated
- Limitations of our study include the limited availability of studies reporting renal function-related outcomes and opportunistic infection; heterogeneity in pooled estimates shows the need for further long-term studies

Conclusion

- CMV infection/disease was associated with increased mortality and graft loss in adults with KT
- Our analysis underscores the importance of interventions to reduce the incidence of CMV infection/disease, thereby reducing the burden of the indirect outcomes associated with CMV infection/disease in KTRs, even in the current era

References

2. Pérez-Sola MJ, et al. Enferm Infecc Microbiol Clin. 2008;26(1):38-47. 3. Liberati A, et al. *BMJ*. 2009;339:b2700.

Acknowledgments

Funding for the work was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA (MSD). Evidera, Inc., received funding from MSD to conduct this research study.

Disclosure

Raval, Tang, and Murata are employees of MSD. Kistler was an employee of Evidera. Inc., at the time of study conduct.

Copies of this presentation obtained through QR (Quick Response) codes are for personal use only and may not be reproduced without permission of the authors.

https://bit.ly/3geKICF

^{1.} Raval et al. Am J Transplant. 2020;20 (suppl 3)