

Introduction and Objectives

- CF is a recessive genetic disease that occurs in 1 out of 2,500 live births caused by a mutation in CFTR (1,2)
- Lung disease and subsequent respiratory failure are the leading causes of CF morbidity and mortality (2)
- Despite treatment advances in CF, tissue damage caused from hyperinflammation and chronic respiratory infections can still contribute to patient morbidity
- It has been speculated that CFTR may play a role in cell death and immune response mechanisms (3,4)
- Objective: To explore how CFTR impairment may impact inflammatory mechanisms

CFTR Function Impacts Proinflammatory Cytokine Expression of Bronchial Epithelial Cells During *Pseudomonas aeruginosa* and *Staphylococcus aureus* Infections CIHR | Canadian Institutes of Health Research

Melissa S. Phuong¹, Subash Sad¹

¹Department of Microbiology and Immunology, University of Ottawa

CIRSC Instituts de recherche en santé du Canada

CFTR(inh)-172 induces greater constitutive

likely related to cell death. THP-1 macrophages were infected with (A) PA14, (B) PAO1, (C) PA14 fliC::tn, or (D) PA14 exsA::tn at an MOI of 1. Cell death via neutral red assay and CFTR expression via immunoblotting were measured over time for up to 3 hr. Mean ± SD for cell death and mean for relative CFTR expression as assessed by

> were infected with (A) PA14 or (B) PAO1 at an MOI of 10. Cell death were measured over time for up to 3 hr. Mean \pm SD for cell death and mean relative CFTR expression as

Email: Melissa.Phuong@uottawa.ca Mailing Address: 451 Smyth Road, Room 4165 Ottawa, ON, K1H 8M5 Phone Number: 613-562-5800 ext. 8259

Bourses d'études supérieures du Canada Vanier Canada Graduate Scholarships

Results

Figure 8. CFTR expression in THP-1 macrophages during *S. aureus* infections reduces with cell death. CFTR expression in HBEs during S. aureus infections changes, but in an inconsistent manner. (A) THP-1 macrophages were infected with S. aureus 6538 at an MOI of 1. CFTR expression via immunoblotting and cell death via neutral red assay were measured over time for up to 3 hr. (B) NuLi-1 and CuFi-1 cells were infected with S. aureus 6538 at an MOI of 10. CFTR expression and cell death were measured as previously described. Mean ± SD for cell death and mean relative CFTR expression as assessed by densitometry are shown.

Conclusions

• CFTR(inh)-172 treatment yields minor differences in HBE IL-8 expression but independently of endogenous functional CFTR • NuLi-1 and CuFi-1 cells demonstrate some differences in cytokine expression with and without infection with PAO1 and S. aureus 6538 • Future directions include further characterizing CFTR expression levels in available cell lines and working towards developing CFTR KO cell lines for direct comparisons using CRISPR

• Understanding how CFTR impacts immune responses can shed light on adjuvant immunotherapy for CF

Acknowledgements

This work was supported by an operating grant from the Canadian Institutes of Health Research and a grant-in-aid from the Lung Association to Dr. Subash Sad. Melissa Phuong is supported by the Vanier Graduate Scholarship from the Canadian Institutes of Health Research.

References

1. Scotet V, Duguépéroux I, Saliou P, Rault G, Roussey M, Audrézet M-P, et al. 2012. Evidence for decline in the incidence of cystic fibrosis: a 35-year observational study in Brittany, France. Orphanet J Rare Dis 1(7):14.

2. Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. 2018. Clin Microbiol Rev 31(4): e00019-18.

3. Rimessi A, Bezzerri V, Patergnani S, Marchi S, Cabrini G, Pinton P. 2015. Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. *Nat Commun* 6: 6201

4. Iannitti RG, Napolioni V, Oikonomou V, De Luca A, Galosi C, Pariano M, et al. 2016. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat *Commun* 7:10797/