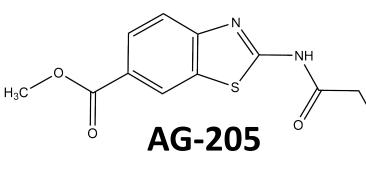
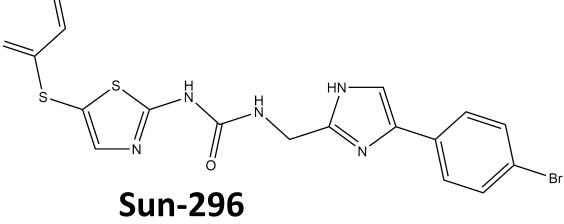


Identification of Novel Inhibitors of *Clostridioides difficile* Enoyl-ACP Reductase II (FabK) by High-Throughput Virtual and Experimental Screening

Overview


- *Clostridioides difficile* is categorized as an '*urgent*' drug-resistant threat by the CDC with 500,000 hospital-acquired infections and 29,000 deaths per year.¹
- Infection recurrence occurs in ~25% of patients treated with metronidazole or vancomycin; sporulation contributes to high relapse rates.
- Enoyl-Acyl Carrier Protein (ACP) reductase is a promising target for narrowspectrum anti-difficile agents with demonstrated essentiality and druggability.
- Species-specific and mechanistically distinct enoyl-ACP reductase isozymes (Fabl, FabL, FabV, FabK) allow for narrow-spectrum C. difficile targeting with decreased microbiome impact.
- Inhibitors of *C. difficile* FabK (*Cd*FabK) have been characterized with promising in vitro and in vivo anti-difficile and anti-sporulation activity.^{2, 3, 4}
- These studies report work done to identify novel inhibitors with increased potency.

aut flora						
Table 1. Enoyl-reductase distribution in gut flora.						
ressor						
abT						
abT						
Found						
abT						
abT						
Found						
apR						
abT						
apR						
apR						


Ind

Known FabK Inhibitors

Benzothiazole scaffold

Phenylimidazole scaffold

Table 2. ADME Properties of Known Inhibitors					
Compound	Protein Binding (%)	Solubility (μM)	Metabolic Stability (<i>t</i> ½)	Caco-2 (nm/s)	
AG-205	99.6 (±0.3)	0.001	1.01 H	66.6 (A/B)	
Sun-296	99.77 (±0.2)	0.01	1.37 H	21.65 (A/B	

Table 3. MIC's of Sun-296 against various bacteria (μ M)					
Organism	Isozyme	- palmitic acid	+ palmitic acid		
C. difficile CD630	FabK	16	16		
C. difficile R20291	FabK	8	2		
S. pyogenes 19615	FabK	<0.0625	4		
C. perfringens HM310	FabV	>64	>64		
B. ovatus HM222	Fabl & FabK	>64	>64		
S. aureus Newman	Fabl	>64	>64		

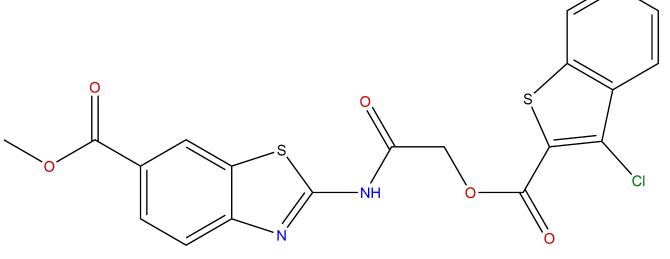
^a Yeast-like Fatty Acid Synthase ^o Known to use endogenous FA's to bypass FAS-II

- The FabK isozyme is present in *C. difficile*, while many non-pathogenic gut organisms express Fabl.
- The Fabl isozyme is not affected by FabK inhibitors.
- The FabT repressor allows for bypass of bacterial fatty acid synthesis (FAS-II) inhibition using host fatty acids; the FapR repressor does not.⁵
- Two known classes of FabK inhibitors exist benzothiazoles and phenylimidazoles.
- The benzothiazole class does not possess whole-cell activity against *C. difficile*.
- The phenylimidazole inhibitor class possesses in vitro and in vivo activity, but poor ADME properties and divergent activity across species.

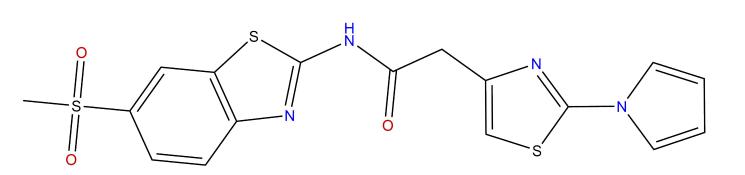
R. D. Wahrmund,¹ K. A. Avad,¹ S. M. Reeve,² J. A. Jones,¹ T. La,¹ R. E. Lee,² K. E. Hevener¹ ¹University of Tennessee Health Science Center, ² St. Jude Children's Research Hospital

Methods & Results - Virtual Screening

CdFabK IC₅₀ 3.06 μM

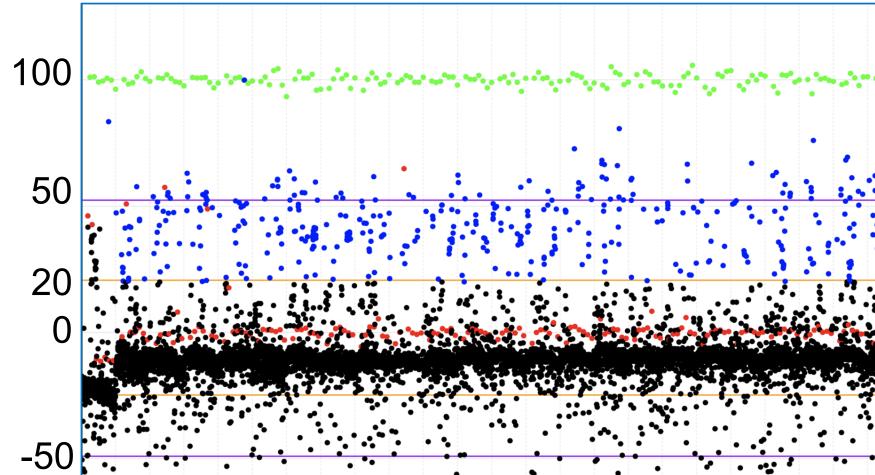

SpFabK IC₅₀

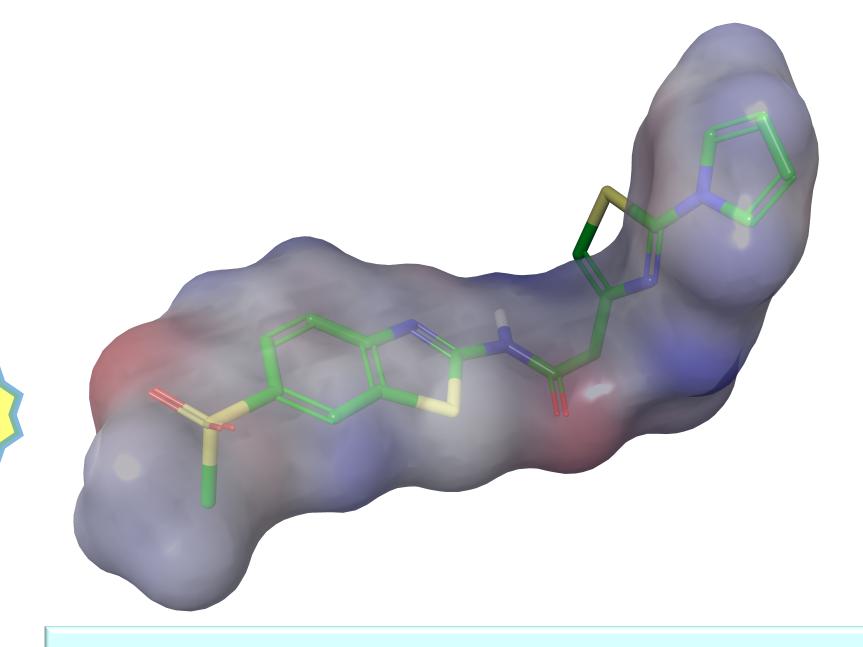
5.32 μM


CdFabK IC₅₀ 1.27µM

SpFabK IC₅₀ 67nM

Methods: 1. *High-throughput molecular docking* of commercial chemical libraries into a comparative model of the CdFabK (built from S. pneumoniae FabK structure). ~2.4M compounds docked and scored. 24 top scoring compounds ordered & tested in-house - no appreciable inhibitory activity. **2.** *Ligand-based virtual screen* - Shape & electrostatic matching search of same libraries using active site conformations of known inhibitors. 93 compounds ordered & tested in-house - 2 confirmed hits.

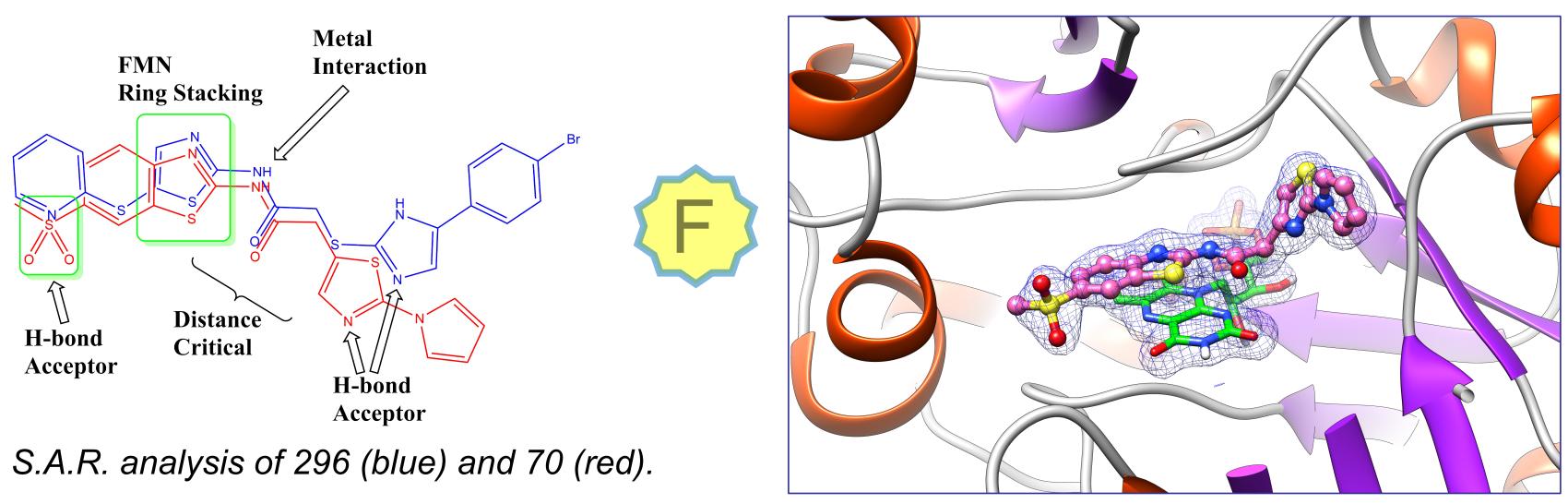

KH-58 - 80% *Cd*FabK inhibition @ 20 μM $CdFabK IC_{50} = N/D$



KH-70 - 92% *Cd*FabK inhibition @ 20 μM *Cd*FabK $IC_{50} = 0.35 \,\mu M$

Methods & Results - High-Throughput Screening

Methods: 1. <u>Primary Assay</u> was a newly designed luminescence-based, biochemical assay that followed consumption of the NADH cofactor during the enzymatic reaction. 2. <u>Secondary assay</u> was a continuous, fluorescence-intensity assay that followed consumption of NADH cofactor (ex 340, em 460). **3.** A lead-like (<300 kDa) library of 10K compounds was screened at SJCRH (*shown below*).



Shown above is the hit compound KH-70 as it matched the AG-205 shape/electrostatic ligand-based search. <u>KH-70 is the first sub-</u> micromolar inhibitor of CdFabK to be <u>characterized to date.</u>

E	Compound	<i>Cd</i> FabK Inhibition (@ 100 μM)
		99.8%
		83.4%
		76.0%
•••		72.7%

S.A.R. Analysis: Analysis of hits from both screening campaigns along with follow up analog testing have allowed the development of a Structure Activity Relationship hypothesis. Key points are shown in the figure below. X-ray Crystal Structure: A 1.7Å co-crystal structure with KH-70 bound to CdFabK has been solved, allowing additional insight into S.A.R. and key binding determinants.

- features (amide group).

This work was supported by NIH/NIAID (R21AI126755). Molecular graphics were generated using the UCSF Chimera (NIGMS P41-GM103311). Use of LS-CAT Sector 21 (grant 085P1000817) at the Advanced Photon Source (US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-11357) is acknowledged. JJ and RW gratefully acknowledge fellowship and scholarship support from the American Foundation for Pharmaceutical Education.

Discussion

Conclusions & Future Directions

Experimental and high-throughput compounds screening have led to the identification of several low micromolar and one sub-micromolar inhibitor of *Cd*FabK. Activity testing of hits and hit analogs has led to an S.A.R. hypothesis that will guide future chemical modifications.

Future studies will focus on attaining whole-cell and in vivo activity in the KH-70 series by incorporation of HTS hit features and bioisosteric modification of labile

Citations

1. CDC. **2019**. DOI: http://dx.doi.org/10.15620/cdc:82532. 2. Ozawa, T., et. al. *Bioorg. Med. Chem.*, **2007**, *15*, 7325–7336. 3. Marreddy R.K.R., et al. ACS Infect Dis. 2019, 5, 208-217. 4. Jones, J.A., et al. ACS Chem. Biol. 2019, 14, 1528-1535. 5. Parsons, J. B., et. al. PNAS. 2011. 108, 15378–15383.

Acknowledgements