

Impact of a Pharmacy-Driven Antimicrobial "Time-Out" on Duration of Therapy in Community-Acquired Pneumonia

BACKGROUND

- Community-acquired pneumonia (CAP) is responsible for approximately one million hospitalizations and 50,000 deaths annually. As a common indication for antimicrobial therapy it poses significant potential for overuse. Infectious Diseases Society of America (IDSA) and American Thoracic Society (ATS) recommend a minimum five days of therapy guided by CAP-associated signs of stability¹
- Each day of antimicrobial exposure is associated with increased risk of antimicrobial-associated adverse events and development of antimicrobial resistance. In 2017, 30% of S. pneumoniae isolates were resistant to \geq 1 clinically relevant antibiotic^{2,3}
- Joint Commission Antimicrobial Stewardship Standards mandate implementation of antimicrobial "time-outs" (ATOs) to prompt assessment of appropriateness of therapy, patient response, and a plan for duration of therapy.⁴ Centers for Disease Control and Prevention recognize pharmacist expertise as a Core Element of Antimicrobial Stewardship Programs⁵
- In January 2018, OSF Healthcare System implemented a 48-hour pharmacy-driven ATO in the electronic health record. The ATO also includes features such as culture data, intravenous (IV) to oral interchange, duplicate therapy, and stewardship review communication tool for handoff

Previous studies evaluating ATOs driven by other members of the primary care tea	am
--	----

72-hour best practice alert to providers ⁶	 Increase in antibiotic de-escalation Reduction in total antibiotic days and length of hospital stay No difference in antibiotic-related adverse events
72-hour "ATO" tool for primary team ⁷	 Increase in modification or discontinuation of regimens No change in inpatient or total days of antibiotic therapy

SETTING

- OSF Saint Anthony Medical Center, Rockford, IL
- Antimicrobial stewardship program: One Infectious Disease Pharmacist and One Infectious **Disease Physician**
- Pharmacy Department: 10 clinical pharmacists
- May 2016- Oct 2017 (PRE) and Apr 2018- Sep 2019 (POST)

OBJECTIVES

Primary	 To determine if a pharmacy-driven antimicrobial time-out impacts duration of therapy in patients hospitalized with CAP
Secondary	 To determine if a pharmacy-driven antimicrobial time-out impacts: Length of hospital stay in patients hospitalized with CAP Efficacy and safety of CAP treatment

METHODS

Study Design

- Retrospective chart review
- Enrollment criteria listed in Table 1
- All patients with ICD-9 diagnosis of CAP pulled from both time periods, then selected for chart review using a random number generator until pre-determined sample size met in both groups

Table 1. Key inclusion and exclusion criteria

Table I. Rey Inclusio		
Inclusion	 Adults ≥18 years old 	β-la
mondorom	 Patients with CAP diagnosis 	Flu
	 Pregnant 	Dis
	 Extra-pulmonary infection (bacteremia, cellulitis, urinary tract infection, etc.) Infection acquired > 48 hours ofter admission 	β-I
	 Infection acquired ≥ 48 hours after admission Mechanical ventilation 	Flu
Exclusion	 Cavitation or tissue necrosis on imaging 	Ef
Exclusion	 Hospitalization in previous 90 days 	
	 Neutropenia (ANC ≤ 1000 cells/mm³) or leukopenia (WBC ≤ 4000 cells/mm³) 	_
	 Immunosuppressed patients (HIV and CD4 count < 200 cells/mm³, active chemotherapy 	-
	within the past 30 days, organ transplant, prophylactic antibiotics, or prednisone	
	equivalent \geq 10 mg daily for greater than 2 weeks	•

Endpoints

Statistical Analysis Sample Size:

- Statistical tests:
- Continuous Data: Positive t-test of mean
- Discrete Data: x2 or Fischer's exact test

Child (n=4) Cavitation (n=1)

Table 2. Baseline Charac

Characteristic

Median age (years)

Female

Inpatient antibiotics

-lactam + macrolide luoroquinolone

Discharge antibiotics

-lactam + macrolide

luoroquinolone

Efficacy outcomes (Table 3; PRE vs. POST)

¹Amolee R Patel, PharmD; ¹Timothy F Murrey, PharmD, BCPS ¹OSF Saint Anthony Medical Center, Rockford, IL

METHODS (continued)

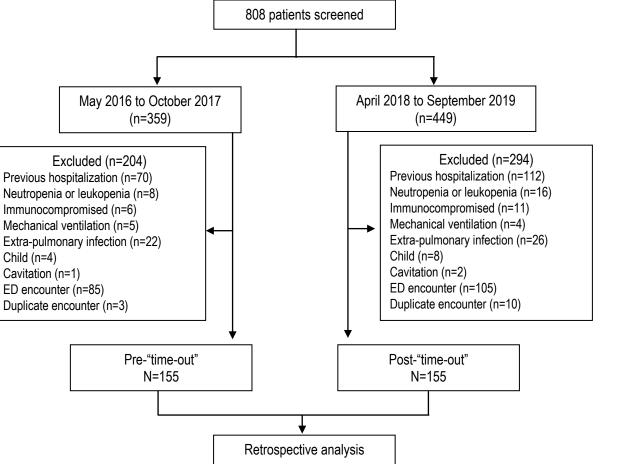
Primary endpoint: Duration of antibiotic therapy (DOT)

Total DOT: Inpatient days of therapy and discharge prescriptions

Secondary endpoints: Length of hospital stay (LOS), duration of IV therapy, 30-day readmission or

emergency department (ED) visit, and antibiotic-associated adverse events

Subgroup analysis: β-lactam and fluoroquinolone-based regimens


 Antibiotic-associated adverse events (as documented by providers or as evidenced in laboratory) values): C. difficile infection, diarrhea, allergic-type reaction, acute kidney injury (AKI, per KDIGO guidelines), and treatment failure (need for escalation of therapy)

Inclusion of 310 patients estimated to provide 80% power to detect a 20% difference in mean duration of antibiotic therapy in adults hospitalized with CAP

RESULTS

808 patient charts reviewed to enroll the necessary number of patients (Figure 1) Baseline characteristics were comparable between treatment arms (Table 2)

1		1	
121	ris		
50		<u>u</u>	

Pre-intervention (n=155)	Post-intervention (n=155)
70 (19-100)	75 (19-100)
69 (45%)	73 (47%)
71%	82%
19%	11%
44%	68%
44%	29%

DOT was 2.14 days shorter following ATO implementation (10.51 days vs. 8.37 days; P< 0.001) Duration of IV therapy (3.86 days vs. 3.21 days; P<0.001) and 30-day ED visit rate (16.13% vs. 3.23%; P<0.001) were also significantly reduced

Differences in LOS and 30-day readmission rate did not meet statistical significance

RESULTS (continued)

Table 3. Efficacy Outcomes			
Endpoint	Pre-intervention	Post-intervention	P-value
Duration of therapy* (days)	10.51 (5-34)	8.37 (4-16)	P<0.001
Inpatient duration*	4.48	4.02	P=0.018
 Outpatient duration* 	6.03	4.35	P<0.001
Length of stay* (days)	4.60	4.45	P=0.279
Duration of IV therapy* (days)	3.86	3.21	P<0.001
30-day readmission rate	14 (9.03%)	7 (4.52%)	P=0.114
30-day ED visit rate	25 (16.13%)	5 (3.23%)	P<0.001

Safety outcomes (Table 4; PRE vs. POST)

after implementation but C. difficile infection and treatment failure were not significantly different

Rates of diarrhea (28.39% vs. 17.42%; P=0.022) and AKI (17.42% vs. 6.45%; P=0.003) were lower **Subgroup Analysis** (**Table 5**; β-lactam vs. fluoroquinolone)

• DOT was shorter in both regimens following implementation, but β-lactam regimens were significantly longer than fluoroquinolone regimens (POST: 8.21 days vs. 7.24 days; P=0.020)

Table 4. Safety Outcomes				
Endpoint	Pre-intervention	Post-intervention	P-value	
C. Difficile infection	4 (2.58)	1 (0.65)	P=0.371	
Diarrhea	44 (28.39)	27 (17.42)	P=0.022	
Acute kidney injury	27 (17.42)	10 (6.45)	P=0.003	
Allergic-type reaction	1 (0.65)	0 (0)	P=0.317	
Treatment failure	5 (3.22)	3 (1.94)	P=0.723	
Table 5. Subgroup Analysis				
Pre-intervention	β -lactam	Fluoroquinolone	P-value	
Duration of therapy* (days)	11.03	10.09	P=0.097	
Post-intervention				
Duration of therapy* (days)	8.21	7.24	P=0.020	
* mean				

CONCLUSIONS

- Implementation of the pharmacy-driven ATO was associated with a shorter DOT and fewer treatment-associated adverse events but no difference in rates of treatment failure or readmissions, suggesting a safe and effective ATO implementation Limitations:
- Retrospective nature of the study restricted data collection, especially in terms of adverse events
- We did not address disease severity, completion of discharge therapy, and subsequent resistance
- Pharmacists interventions were not intentionally documented and therefore not measured, representing an opportunity for prospective audit in the future
- Prescribing trends were noted in data collection that did not change with implementation of the ATO Providers prescribing consistent durations on discharge regardless of inpatient DOT
- Discrepancies between intended DOT and actual duration administered
- The next steps for targeted pharmacist interventions include:
- Ensuring discharge prescriptions reflect continuity of therapy
- Intervene earlier to initiate oral therapy
- Continue to encourage evidence-based DOT

66 East State Street Rockford, IL 61108 (815) 395-5556

REFERENCES

[.] Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia: An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45-67 2. Teshome BF, Vouri SM, Hampton N, Kollef MH, Micek ST. Duration of exposure to antipseudomonal β-lactam antibiotics in the critically ill and development of new resistance. Pharmacotherapy. 2019;39(3)261-70

^{3.} Chalmers JD, Akram AR, Singanayagam A, Wilcox MH, Hill AT. Risk factors for Clostridium difficile infection in hospitalized patients with community-acquired pneumonia. Journ of Infect. 2016;73(1):45-53. 4. New Antimicrobial Stewardship Standards. Joint Commission Perspectives. 2016;36(7):1-8.

^{5.} CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Atlanta, GA: US Department of Health and Human Services, CDC; 2014. Available at http://www.cdc.gov/getsmart/healthcare/ implementation/core elements.htm

^{6.} Wolfe JR, Bryant AM, Khoury JA. Impact of an automated antibiotic time-out alert on the de-escalation of broad-spectrum antibiotics at a large community teaching hospital. Infect Control Hosp Epidemiol. 2019;40(11):1287-89 7. Thom KA, Tamma PD, Harris AD, et al. Impact of a prescriber-driven antibiotic time-out on antibiotic use in hospitalized patients. Clin Infect Dis. 2019;68(9):1581-4.