

Early Oral Therapy for Pediatric Streptococcus anginosus Purulent Intracranial Infections: A Single Center Experience

Dodson D.S.¹ Heizer H.R.¹ Gaensbauer J.T.^{1,2}

¹Children's Hospital Colorado Section of Infectious Diseases ²Denver Health Department of Pediatrics

Children's Hospital Colorado

Corresponding Author: Daniel Dodson, daniel.dodson@childrenscolorad.org

BACKGROUND

Pediatric *Streptococcus anginosus* intracranial pyogenic are commonly treated with prolonged intravenous (IV) antibiotics, exposing patients to risks of a long-term central catheter. Antibiotics with high oral bioavailability, such as levofloxacin, may allow early oral transition.

METHODS

- Retrospective chart review from 1/2004 to 2/2019
- Inclusion criteria: radiologic evidence of an infected parenchymal, subdural, or epidural fluid collection AND a positive culture for *S. anginosus* from an intracranial source, specific extracranial sources (sinus, scalp, orbit), or blood
- Primary endpoint: oral antibiotic failure defined as worsening infection on oral therapy requiring reinitiation of IV therapy
- Comparisons done using Fisher's exact test with significance set at p:< 0.05)

RESULTS

- 57 patients transitioned to oral therapy during treatment; **none had oral antibiotic** failure
- Two patients required re-introduction of IV therapy (one for medication non-adherence; one for adverse reaction to levofloxacin)
- Patients transitioned in the first 28 days were more likely to have an epidural collection, less likely to have a subdural collection, less likely to have a brain abscess, and less likely to have needed a source control procedure
- Oral levofloxacin was used in 54 of the 57 patients

CONCLUSION: Early Transition to Oral Therapy for Pediatric Streptococcus anginosus Purulent Intracranial Infections was Effective and Well-Tolerated

Figure 1: Outcomes of Oral Transition By Timing of Oral Transition

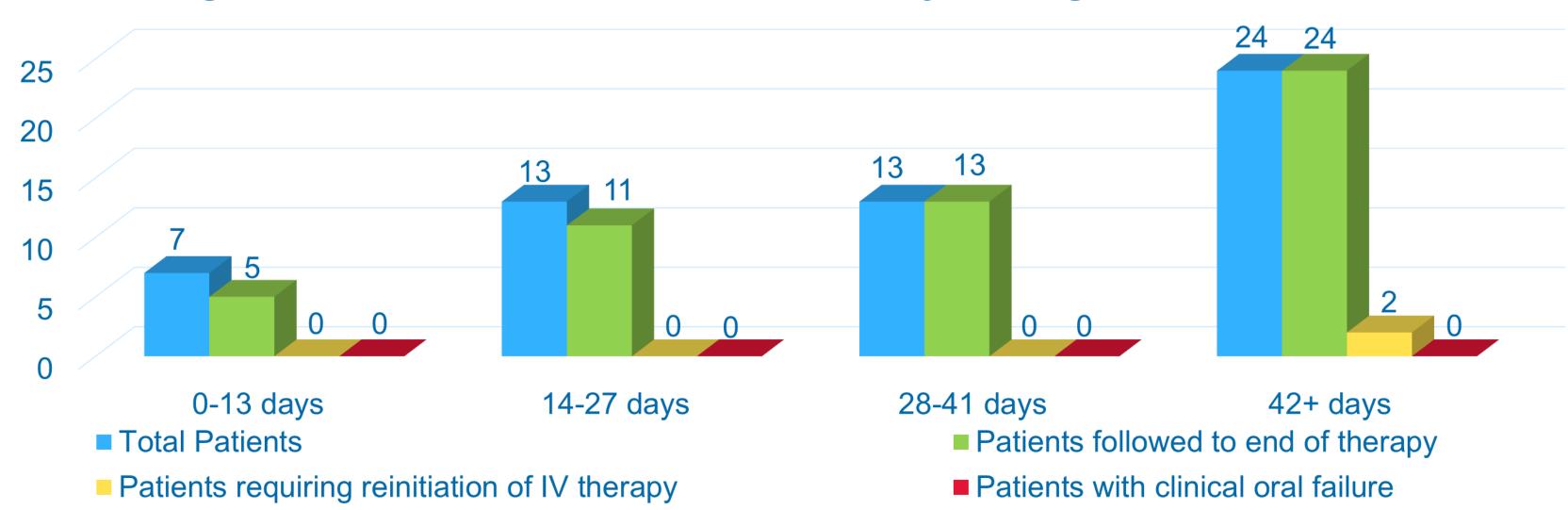
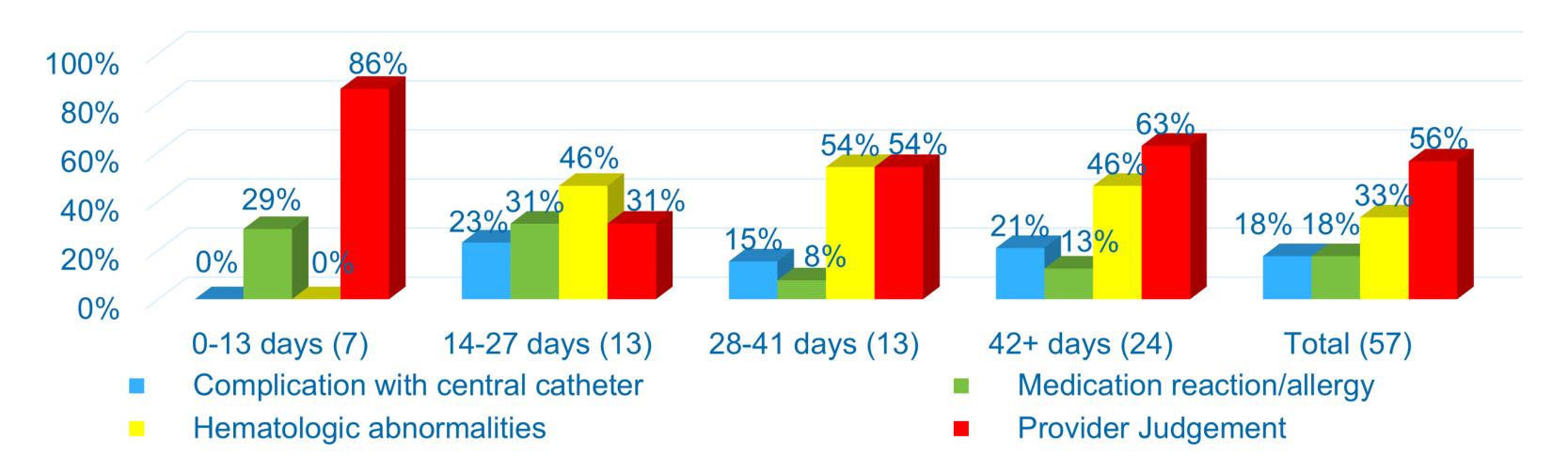



Figure 2: Contributing Reasons for Oral Transition By Timing of Oral Transition

Table 1: Patient and Disease Characteristics

Length of total therapy (average days) Age (average years)	83 11
Sex (percent female)	35
Race (percent)	33
Asian	4%
Black or African American	79
White	74
Other	12
Unknown The picits (no recent)	49
Ethnicity (percent)	0
Hispanic	0
non-Hispanic	77
Other	0.0
Unknown	49
Intracranial Diagnosis (percent)	
Brain Abscess	30
Subdural Abscess/Empyema	40
Epidural Abscess/Empyema	60
Presumed Source of intracranial infection (percent)	
Sinogenic	72
Otogenic	7 %
Trauma	4%
Hematogenous/unkown	18
Co-Diagnoses	
Orbital Absecss	16
Osteomyelitis	25
Sinus Thrombosis	16
Co-Pathogens	
Methicillin sensitive Staphylococcus aureus	16
Methicillin resistant Staphylococcus aureus	0%
Coagulase negative Staphylococci	25
Other Streptococcus species	11
Gram negative aerobic bacteria	14
Anaerobic bacteria	14
Candida species	4%
Number source control procedures (percent)	
Zero	0.3
One	51
Two	14
Three	4%
Laboratory Data	
Average highest C-reactive protein (mg/dl)	14
Average C-reactive protein before oral transition	0.9
Average highest Erythrocyte sedimentation rate (ESR)	
Average ESR before oral transition	18

The Authors have no conflicts of interest to disclose.