Safety and Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine (PCV20) in Healthy Infants in the United States

please contact: Nicola P. Klein Division of Research

Center Oakland, CA, USA Email: Nicola.Klein@kp.org

Shelly Senders,¹ Nicola P. Klein,^{2*} Erik Lamberth,³ Allison Thompson,⁴ Jelena Drozd,³ James Trammel,³ Yahong Peng,³ Peter C. Giardina,⁴ Kathrin U. Jansen,⁴ William C. Gruber,⁴ Daniel A. Scott,³ Wendy Watson³

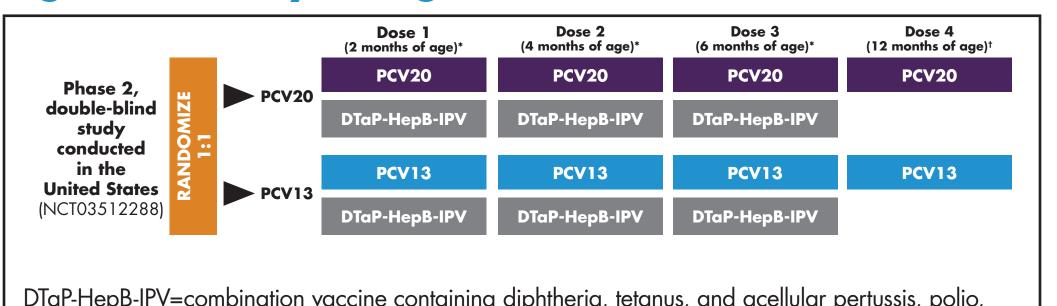
¹Senders Pediatrics, South Euclid, OH, USA; ²Kaiser Permanente Vaccine Study Center, NY, USA; ⁴Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA

*Presenting author

BACKGROUND

- Pneumococcal disease is a major global health concern that can manifest as invasive (ie, bacteremia, meningitis, bacteremic pneumonia) and noninvasive (ie, otitis media, nonbacteremic pneumonia) disease.1
- Children <5 years of age are at increased risk of disease and generally exhibit a more rapid progression.²
- The introduction and widespread use of the 7-valent pneumococcal conjugate vaccine (PCV7) followed by the 13-valent PCV (PCV13) have significantly reduced pneumococcal disease burden.³⁻⁷
- However, a substantial burden of pneumococcal disease caused by non-PCV13 serotypes remains; expanded-valent PCVs have the potential to address this unmet need.8,9
- A 20-valent PCV (PCV20), which includes all components of PCV13 along with capsular polysaccharide conjugates for 7 additional serotypes, is currently in development.
- These 7 additional serotypes were chosen based on their prevalence as a cause of invasive pneumococcal disease, wide geographic distribution, and other factors supporting inclusion (eg, antibiotic resistance, disease severity).^{1,8-14}

OBJECTIVE


To evaluate the safety and immunogenicity of PCV20 in

METHODS

Study Design and Subjects

 In this phase 2, multicenter, randomized, active-controlled, double-blind study (NCT03512288), healthy infants were randomized 1:1 to receive either PCV20 or PCV13 at 2, 4, 6, and 12 months of age in combination with other routine infant vaccines (Doses 1, 2, 3, and 4, respectively; **Figure 1**).

Figure 1. Study Design

DTaP-HepB-IPV=combination vaccine containing diphtheria, tetanus, and acellular pertussis, polio, and hepatitis B antigens; Pediarix®, GSK; PCV13=13-valent pneumococcal conjugate vaccine; PCV20=20-valent pneumococcal conjugate vaccine. *Subjects were permitted to receive the Haemophilus influenzae type B and rotavirus vaccines. [†]Subjects were permitted to receive the measles, mumps, and rubella vaccine. Note: an influenza vaccine was permitted to be given with study vaccine in age-eligible subjects

- Local reactions and systemic events within 7 days of each dose were reported daily using an electronic diary filled out by each subject's parent/legal representative.
- Adverse events (AEs) were collected from Dose 1 to 1 month after Dose 3 and from Dose 4 to 1 month after Dose 4.
- Serious AEs (SAEs) and newly diagnosed chronic medical conditions (NDCMCs) were collected from Dose 1 to 6 months after Dose 4.

Immunogenicity

Immunogenicity was assessed by anticapsular immunoglobulin G (lgG) concentrations measured by the Pfizer Luminex assay and by opsonophagocytic activity (OPA) titers 1 month after Dose 3, before Dose 4, and 1 month after Dose 4.

METHODS (continued)

Statistical Analysis

- All analyses were descriptive, with no hypothesis tests or formal between-group comparisons for safety or immunogenicity results.
- Safety endpoints were summarized as percentages along with associated 2-sided 95% CIs calculated by the Clopper-Pearson method.
- The IgG geometric mean concentrations (GMCs) and OPA geometric mean titers (GMTs) with associated 2-sided 95% CIs based on the Student t distribution were calculated at each time point.
- The IgG geometric mean fold rises (GMFRs) from 1 month after Dose 3 to 1 month after Dose 4 along with the associated 2-sided 95% CIs based on Student t distribution were calculated.
- Percentages of participants achieving prespecified IgG concentrations (≥0.35 µg/mL or equivalent Luminex level^{15,16}) and the Clopper-Pearson 2-sided 95% Cls at 1 month after Dose 3 were summarized.

RESULTS

Study Population

- 232 and 228 infants were randomized to the PCV20 and PCV13 groups, respectively.
- 89.3% and 82.8% completed the 1-month visits after Doses 3 and 4, respectively.
- Demographic characteristics were similar between groups (Table 1)

	PCV20 (n*=232)	PCV13 (n*=228	
	%	%	
Male	51.7	49.6	
Race [†]			
White	69.4	75	
Black or African American	15.1	12.7	
Asian	3.9	2.2	
American Indian or Alaska Native	1.7	1.3	
Native Hawaiian or other Pacific Islander	0.4		
Multiracial	9.5	6.6	
Not reported	0.0	0.9	
Ethnicity			
Hispanic/Latino	17.7	17.5	
Age at Dose 1, d [‡]			
Mean (SD)	64.5 (8.1)	64.5 (6.7	
Median	64	64	
Min, max	44, 95	45, 89	

*n=number of randomized subjects in the specified group.

†Subjects whose race is not in the listed categories are included in the "not reported" category. [‡]For subjects randomized but not vaccinated, age is calculated using enrollment date instead of the

- Local reactions and systemic events are summarized in Figure 2.
- AEs, immediate AEs, SAEs, and NDCMCs are summarized in Table 2

Immunogenicity

Immunoglobulin G

13 Matched Serotypes Robust immune responses were observed after PCV20, and IgG GMCs at 1 month after Dose 3 and before and 1 month after

Dose 4 of either vaccine were similar (Figure 3A and 3B). IgG GMFRs from 1 month after Dose 3 to 1 month after Dose 4 demonstrate that both PCV20 and PCV13 show similar boosting (Figure 3C).

⁷ Additional Serotypes

IaG GMCs at 1 month after Doses 3 and 4 were increased in the PCV20 group and remained low in the PCV13 group (Figure 4A

are shown in **Figure 4C**. Prespecified IgG Concentrations for the 13 Matched and 7 Additional

Percentages of subjects achieving prespecified IgG concentrations and associated 95% Cls at 1 month after Dose 3 are shown in

Figure 5. Distribution Curves of IgG Concentrations for the 13 Matched Serotypes

The distributions of IgG concentrations 1 month after Dose 3 are presented in Figure 6. Overall, the IgG concentrations to the 13 matched serotypes were

Opsonophagocytic Activity

20 serotypes.

OPA responses were observed for all 20 vaccine serotypes at 1 month after Dose 3 of PCV20 (Figure 7).

slightly lower in the PCV20 group; however, the decrement in

concentrations was small and robust responses were induced to all

Table 2. Summary of Adverse Events in the Safety Population

Type of AE Time Point Relationship	PCV20			PCV13			
	n*	%	95% CI [†]	n*	%	95% CI [†]	
AE							
Dose 1 to 1 mo after Dose 3‡	141	61.0	54.4, 67.4	128	56.4	49.7, 62.9	
Related [‡]	5	2.2	0.7, 5.0	3	1.3	0.3, 3.8	
Dose 4 to 1 mo after Dose 4§	36	18.3	13.1, 24.4	49	25.3	19.3, 32.0	
Related§	2	1.0	0.1, 3.6	3	1.5	0.3, 4.5	
Immediate AE							
Dose 1 [‡]	1	0.4	0.0, 2.4	0	0.0	0.0, 1.6	
Dose 2¶	1	0.5	0.0, 2.5	0	0.0	0.0, 1.7	
Dose 3#	2	1.0	0.1, 3.4	0	0.0	0.0, 1.8	
SAE							
Entire study [‡]	12	5.2	2.7, 8.9	5	2.2	0.7, 5.1	
Related [‡]	0	0	0	0	0	0	
NDCMC							
Entire study [‡]	12	5.2	2.7, 8.9	8	3.5	1.5, 6.8	
Deaths							
Entire study [‡]	0	0	0	0	0	0	

onjugate vaccine; PCV20=20-valent pneumococcal conjugate vaccine; SAE=serious adverse event. *n=number of participants reporting ≥ 1 occurrence of the specified event. †Exact 95% Cls were calculated using the Clopper and Pearson method. [‡]Denominators used in the percentage calculations: PCV20, n=231; PCV13, n=227.

§Denominators used in the percentage calculations: PCV20, n=197; PCV13, n=194. Occurring within 30 min of vaccination. *Denominators used in the percentage calculations: PCV20, n=221; PCV13, n=213. *Denominators used in the percentage calculations: PCV20, n=210; PCV13, n=206.

Figure 2. Percentages of Subjects Experiencing Local Reactions (A) and Systemic Events (B) After Each Dose

RESULTS (continued)

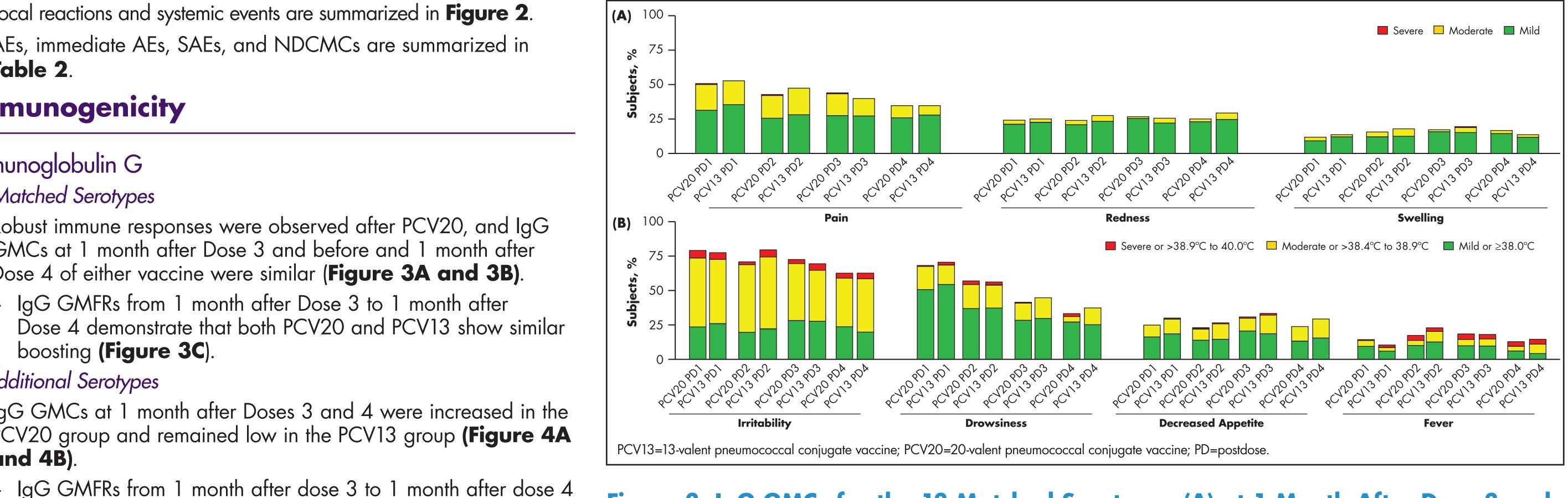
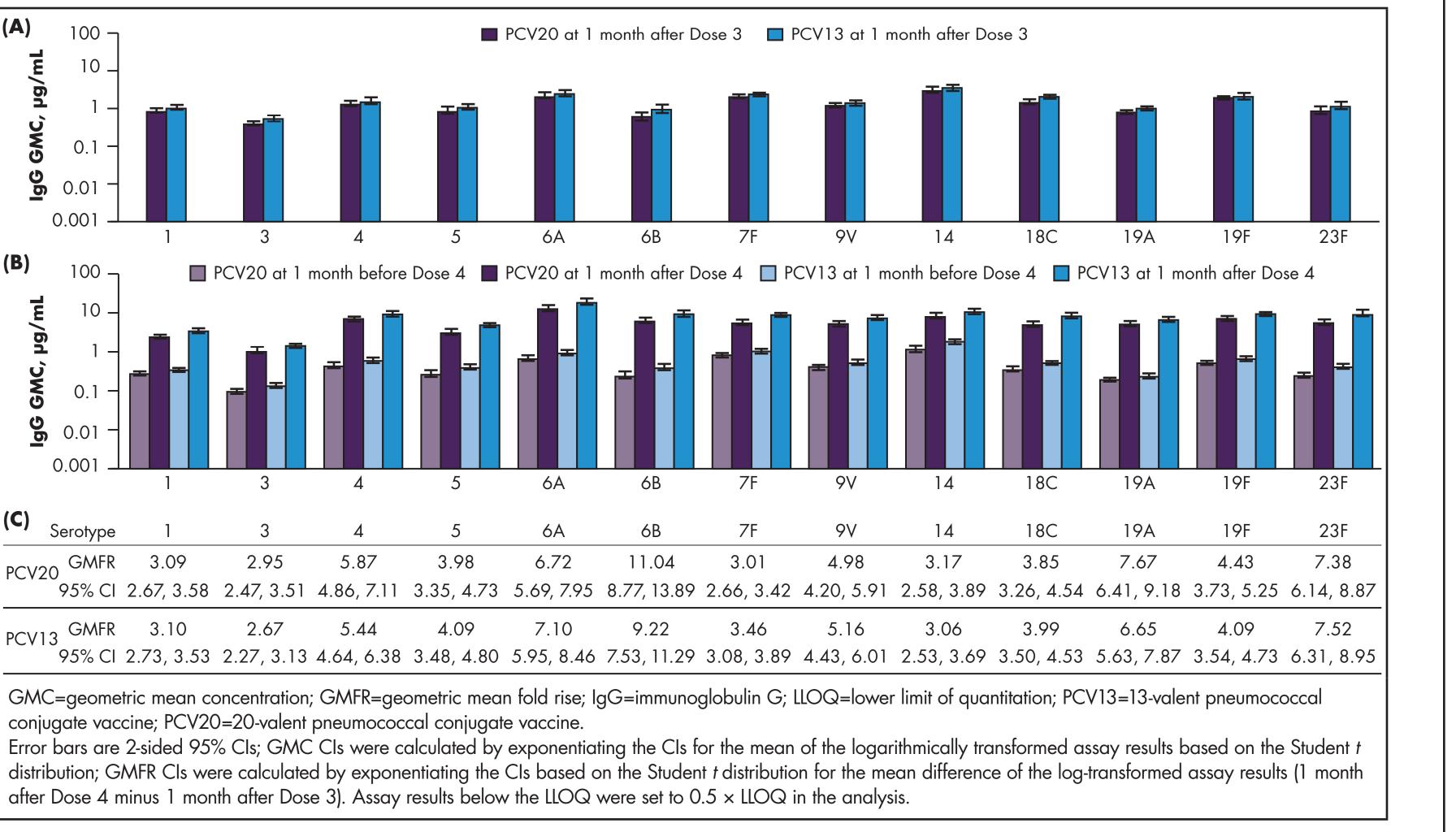
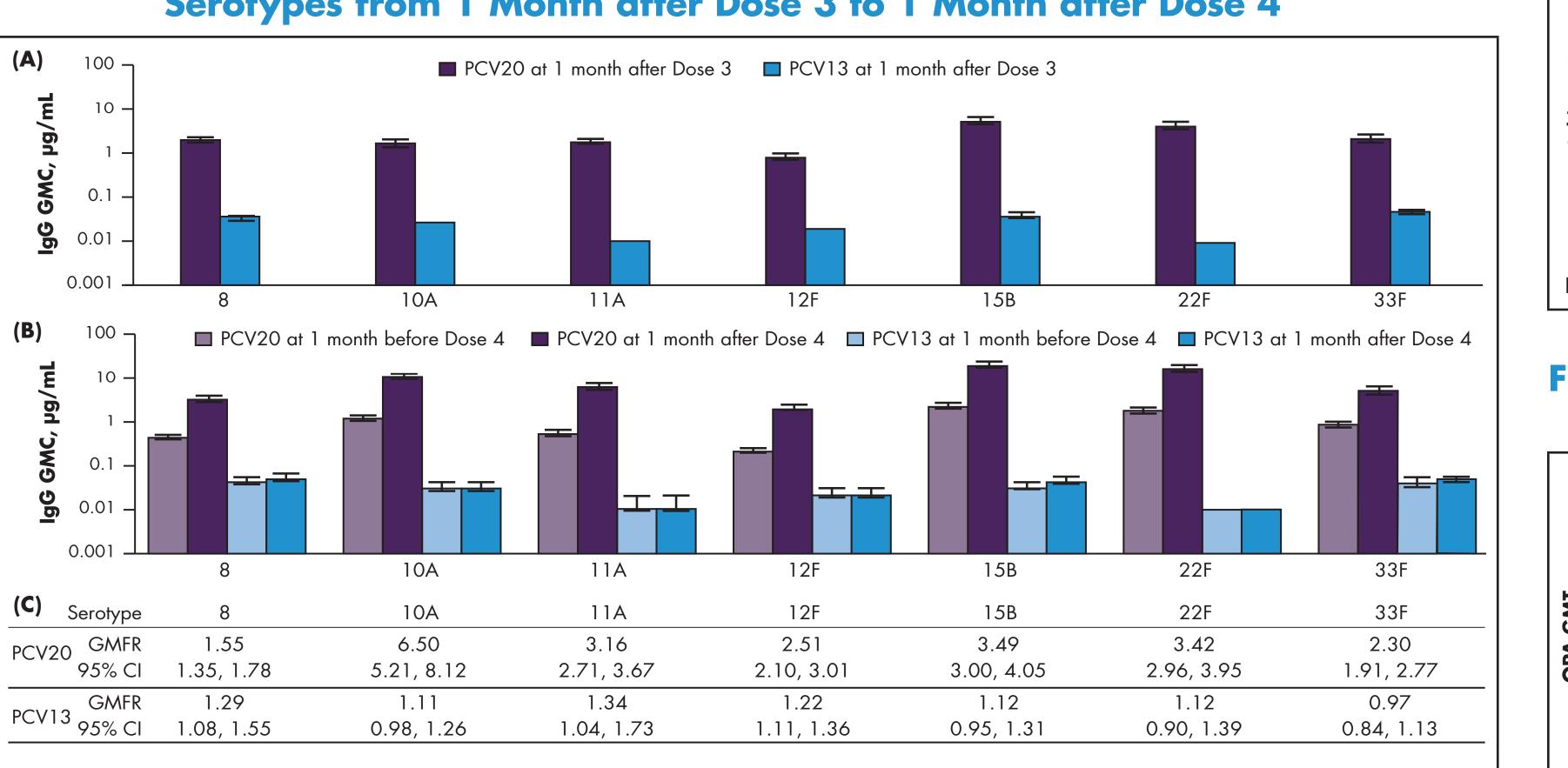
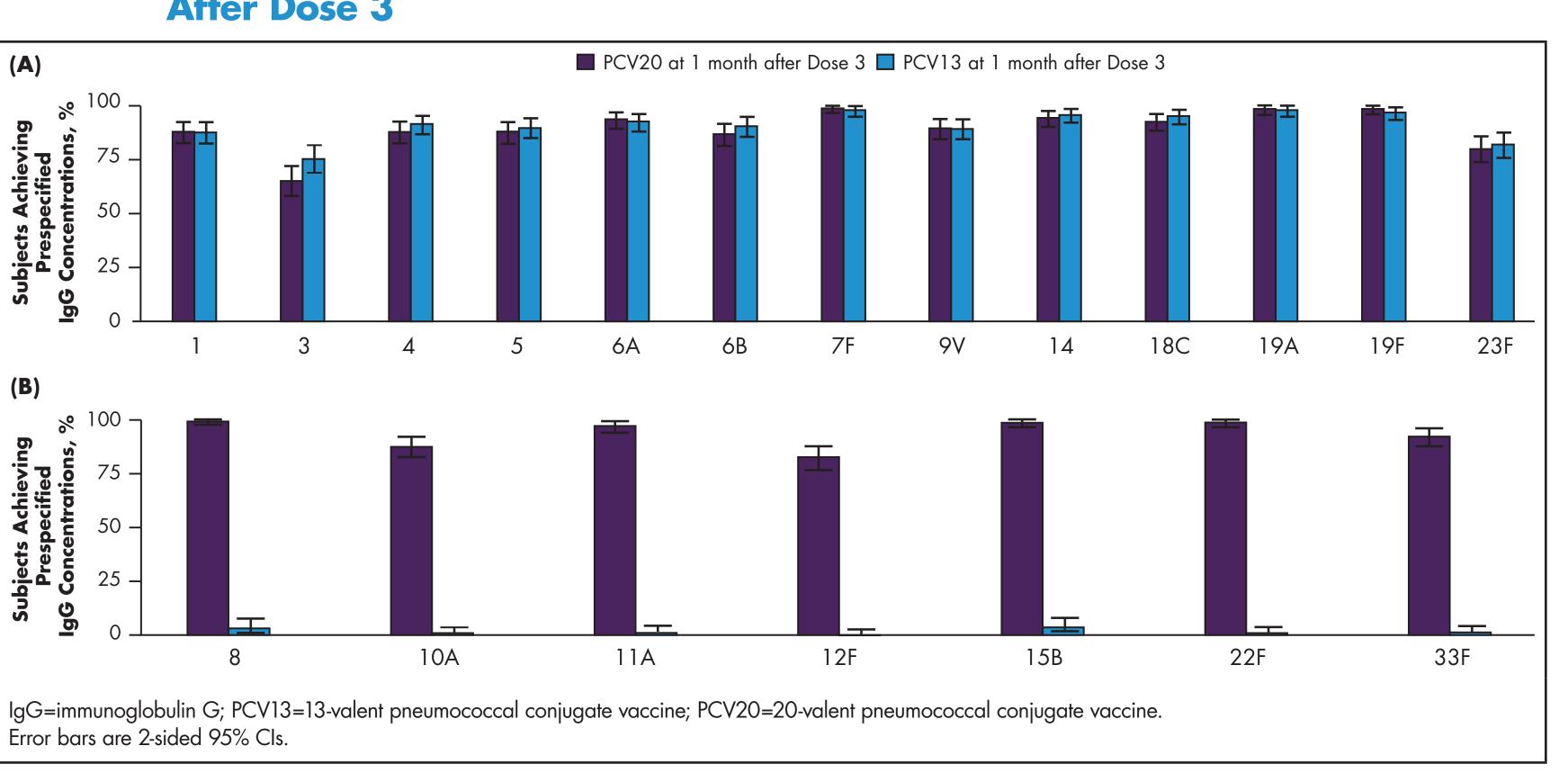
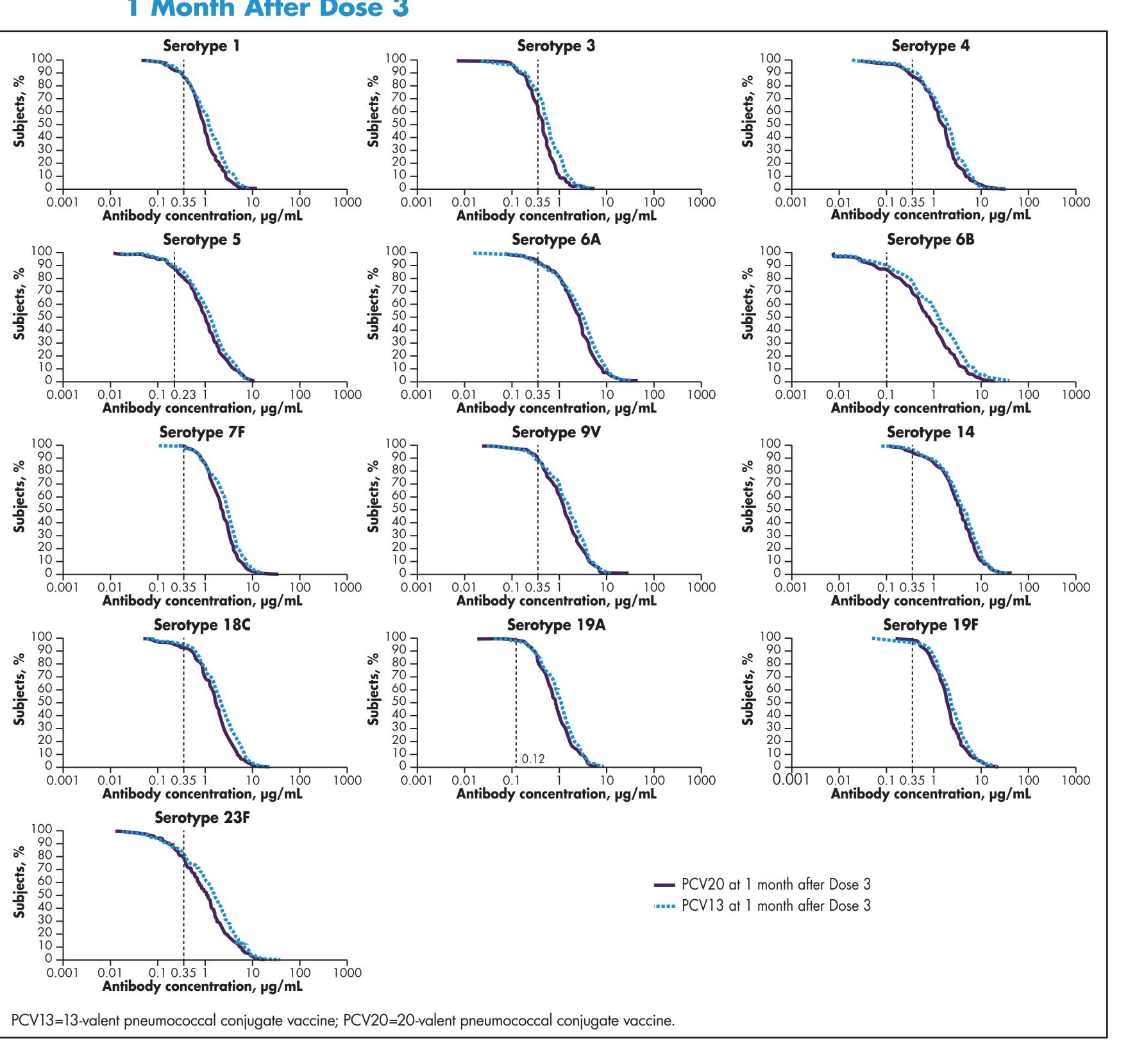


Figure 3. IgG GMCs for the 13 Matched Serotypes (A) at 1 Month After Dose 3 and Figure 6. Reverse Cumulative Distribution Curves for the 13 Matched Serotypes at (B) 1 Month After Dose 4 and (C) GMFRs from 1 month after Dose 3 to I month after Dose 4


Figure 4. IgG GMCs for the 7 Additional Serotypes (A) at 1 Month After Dose 3 and (B) and 1 Month After Dose 4 and (C) GMFRs for the 7 Additional Serotypes from 1 Month after Dose 3 to 1 Month after Dose 4

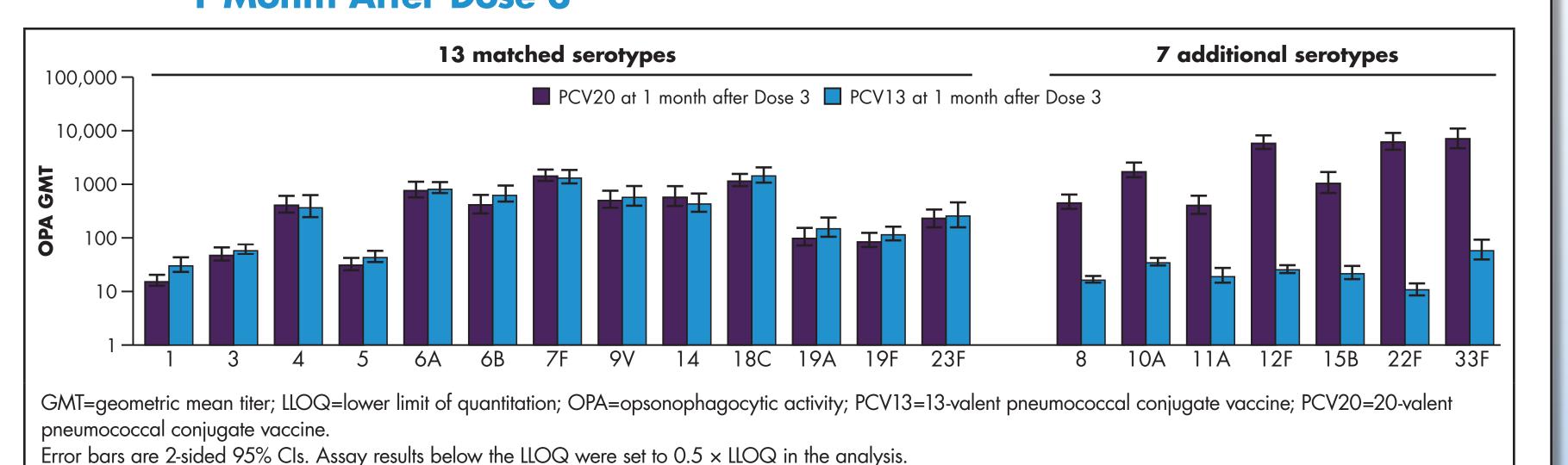

GMC=geometric mean concentration; GMFR=geometric mean fold rise; IgG=immunoglobulin G; LLOQ=lower limit of quantitation; PCV13=13-valent pneumococcal conjugate vaccine: PCV20=20-valent pneumococcal conjugate vaccine. Error bars are 2-sided 95% Cls; GMC Cls were calculated by exponentiating the Cls for the mean of the logarithmically transformed assay results based on the Student t distribution: GMFR CIs were calculated by exponentiating the CIs based on the Student t distribution for the mean difference of the log-transformed assay results (1 month after Dose 4 minus 1 month after Dose 3). Assay results below the LLOQ were set to 0.5 x LLOQ for the analysis.

Figure 5. Percentages of Subjects Achieving Prespecified IgG Concentrations for (A) the 13 Matched Serotypes and (B) 7 Additional Serotypes at 1 Month

Figure 7. OPA GMTs for the 13 Matched Serotypes and 7 Additional Serotypes at 1 Month After Dose 3

CONCLUSIONS

- PCV20 was well tolerated, with a safety profile similar to PCV13.
- PCV20 induced robust immune responses to all 20 serotypes.
- IgG concentrations after PCV20 were similar to the licensed vaccine (PCV13) for the 13 matched serotypes.
- Robust IgG responses to the 7 additional serotypes were observed.
- Boosting of all 20 serotypes was observed after Dose 4, providing evidence that immune memory was elicited.
- The immune responses were also associated with functional opsonic killing activity.
- These findings supported US Food and Drug Administration breakthrough designation, which helps expedite vaccine development and review based on the vaccine's potential to be a substantial improvement over available therapy for prevention of serious disease, and also supported further development of PCV20 in the pediatric population.

REFERENCES

- Cui YA, et al. Hum Vaccin Immunother. 2017;13(6):1-13.
- Berical AC, et al. *Ann Am Thorac Soc.* 2016;13(6):933-944. World Health Organization. Vaccines in National Immunization Programme update. Available at: http://www.who.int/immunization/monitoring_surveillance/VaccineIntroStatus pptx. Accessed October 2, 2020.
- 4. Tan TQ. Clin Microbiol Rev. 2012;25(3):409-419.
- Pilishvili T, et al. *J Infect Dis.* 2010;201(1):32-41.
- Moore MR, et al. Lancet Infect Dis. 2015;15(3):301-309. Hoffman HJ, et al. Otolaryngol Head Neck Surg. 2013;148(4 Suppl):E1-E25.
- 8. Balsells E, et al. *PLoS One*. 2017;12(5):e0177113.
- 9. Hausdorff WP and Hanage WP. Hum Vaccin Immunother. 2016;12(2):358-374. 10. Moore MR, et al. Lancet Infect Dis. 2015;15(3):301-309.
- . Metcalf BJ, et al. *Clin Microbiol Infect*. 2016;22(1):60.e69-60.e29.
- 12. Tomczyk S, et al. *Clin Infect Dis.* 2016;62(9):1119-1125. 13. Wantuch PL and Avci FY. Hum Vaccin Immunother. 2019;15(4):874-875.
- 14. Yahiaoui RY, et al. BMC Infect Dis. 2018;18(1):440.
- 15. an CY, et al. *mSphere*. 2018;3(4). 16. Pavliakova D, et al. *mSphere*. 2018;3(4).

This work was sponsored by Pfizer Inc.

ACKNOWLEDGMENTS

FUNDING

Medical writing support was provided by Lindsey Kirkland, PhD, of ICON plc (North Wales, PA) and was funded by Pfizer.

DISCLOSURES

S Senders has nothing to disclose; NP Klein has received research support from Pfizer, Merck, GSK, Sanofi Pasteur, and Protein Science; all other authors are employees of Pfizer and may hold stock or stock options.