Generation CHOC Children's

Abstract

Background: 2011 IDSA guideline recommended targeting vancomycin (VAN) trough (TR) 15-20 mg/L as a surrogate marker for optimal area-under-concentration time curve, AUC over MIC ratio \geq 400. Studies suggested attainment of target AUC \geq 400 with TR 7-11 mg/L in children. In 2018, CHOC implemented VAN monitoring targeting AUC/MIC 400-600 or TR 7-15 mg/L. Our objectives are to evaluate differences in VAN utilization, exposure, nephrotoxicity and cost savings between pre (pre-guideline, pG) and post implementation (postguideline, PG) of AUC-guided VAN monitoring guideline in children.

Methods: Retrospective review of patients prescribed VAN between Jan 2016 - Jun 2019. Primary objectives evaluated differences in pharmacokinetic (PK), AUC and nephrotoxicity in patients 3 mth to < 18 years.

Results: For the PK analysis, 35 in each pG and PG group were included. Highest daily dose (mg/kg) and AUC attained was significantly higher in pG compared to PG group (74.9 vs. 59.9, p = 0.002 and 647 vs. 469, p < 0.0001), respectively. AUC changes from the initial regimen to the final adjusted regimen was higher in pG group (532 vs. 647, p = 0.0008); there was no difference in PG group (459 vs. 469, p = 0.647). More patients experienced nephrotoxicity in pG compared to PG (11.4%) (4/35) vs. 0 (0/35), p = 0.039). Logistic regression analysis identified AUC 800-900 as a significant risk for nephrotoxicity. Net reduction in VAN utilization of 19.7 DOT/1000pd, savings of \$100,150 and 738 fewer levels drawn were observed in PG compared to pG.

Conclusion: AUC-guided VAN monitoring in children resulted in less exposure, utilization, and nephrotoxicity. Consistent with recommendations from the 2020 Consensus guideline, a threshold of AUC < 800 mg*h/L and TR < 15 mg/L to minimize risk of nephrotoxicity.

	Objectives						
Compare differences between pre-guideline (pG) and post- guideline (PG)							
	Primary – PK analysis	S	econdary – Overall Utilization				
•	VAN daily dose (TDD) and DOT	•	VAN utilization (DOT/1000 pt days, \$ spend)				
•	VAN daily AUC	•	VAN levels drawn				
•	Highest TR attained						
•	Rate of nephrotoxicity*						

Vancomycin Exposure and Utilization Following Implementation of AUC-guided **Monitoring in Children**

<u>Ruquaya Quraishi, PharmD¹, Negar Ashouri, MD², Richard Beuttler, PsyD, MS³, M. Tuan Tran, PharmD^{1*}</u>

¹Department of Pharmacy Services, ²Division of Infectious Diseases, CHOC Children's Hospital, Orange, CA, ³ School of Pharmacy, Chapman University, Irvine CA

Methods

- Design: retrospective, cohort chart review
- Pre-Guideline (pG): target TR 15-20 mg/L
- Post-Guideline (PG): AUC/MIC 400-600 or TR 7-15 mg/L
- Inclusion: 3 mth 17 yrs who received VAN
- Exclusion criteria: Patients who received renal replacement therapy (RRT) or ECMO $AUC24 = TDD (mg) / CL_{VAN}$

 $CL_{VAN} = 0.248 * Wt^{0.75} * (0.48/sCr)^{0.361} * (In(Age)/7.8)^{0.995}$

Figure I. Study Groups and Data Query

Results

Table I. Baseline Patients Characteristics – PK Analysis					
Demographics	Pre-Guideline	Post Guideline	P-value		
Median (IQR)	(n=35)	(n=35)			
Age (yr)	9.6 (2.7-13.5)	6.3 (1.6-13.5)	0.712		
Weight (kg)	28.8 (11.9-50.5)	21.2 (12.5-39.3)	0.167		
Male n (%)	21 (60)	21 (60)	1.000		
Concur. nephrotox.*, n (%)	21 (60)	16 (45.7)	0.394		
Serum Creatinine	0.4 (0.3 – 0.5)	0.3 (0.2 – 0.4)	0.599		
ICU stay, n (%)	7 (20)	12 (34.3)	0.179		
Hem/Onc, n (%)	16 (45.7)	15 (42.9)	0.810		
VAN Indication, n (%)					
Febrile neutropenia	13 (37.1)	10 (28.6)			
Pneumonia	5 (14.3)	7 (20)			
CLABSI	9 (25.7)	6 (17.1)			
Sepsis unknown source	4 (11.4)	3 (8.6)			
CNS	3 (8.6)	6 (17.1)			
SSTI	2 (5.7)	2 (5.7)]		

*Aminoglycosides, NSAIDs, contrasts, vasopressors, acyclovir, loop diuretics, amphotericin B, pip/tazo or methotrexate

Table 2 Vancomycin Exposure and Nenhrotoxicity								
Variable, median (IQR)	pG (n=35)	PG (n=35)	CI (95%)	P-value				
DOT, days	2 (2, 4)	3 (2, 4)	-1.8 - 0.5	0.243				
Mean starting dose, mg/kg/day	65.5	58.3	0.5 - 13.8	0.343				
Highest TDD, mg/kg/day	74.9 (35-122)	59.9 (30-100)	5.9 - 24	0.001				
Highest AUC, mg*h/L	647 (364-1016)	469 (269-669)	114.4 - 241.4	<0.001				
Highest TR, mg/L	13 (7-28)	11 (5-27)	-0.3 - 4.5	0.084				
# levels drawn	1 (1, 2)	1 (1, 2)	-0.4 - 0.4	0.883				
Nephrotoxicity n, (%)	4 (11.4)	0	0.01 - 0.2	0.039				

	Table 3. Initial vs. Final Dose Adjusted AUC					
	Group	Initial AUC (mg*h/L)	Final Adj. AUC (mg*h/L)	<i>p</i> -value	95%	
	Pre-	532	647	<0.001	(-17	
	Post- Guideline	459	469	0.646	(-55	

Figure 3. Utilization Trends of anti-MRSA agents

Summary / Conclusions

- AUC-guided VAN monitoring in children resulted in:
- Less VAN exposure (469 vs. 647 mg*h/L)
- Lower nephrotoxicity (0 vs. 4 (11.4%))
- Less utilization and fewer levels drawn
- Net savings \$100,150 in VAN purchased
- Logistic regression identified AUC 800-900 mg*h/L an independent risk factor for nephrotoxicity

*M. Tuan Tran, PharmD CHOC Children's Hospital mtran@choc.org

Results

Figure 2.AUC and Nephrotoxicity

VAN Utilization post-Implementation of AUC-guided TDM

- ↓ 81% VAN purchased resulting in \$100,150 net savings
- 59.2% TR drawn (1,247 to 509)
- 40.4% in VAN utilization (48.8) to 29.1 DOT/1000pt days)

References

- 1. Liu C, Bayer A, Cosgrove SE, et al. Clin Infect Dis. 2011;52(3):285-92
- 2. Moise-broder PA, Forrest A, Birmingham MC, Schentag JJ. Clin Pharmacokinet. 2004;43(13):925-42. 3. Rodvold KA, Everett JA, Pryka RD, et al. Pediatr Infect Dis J. 2013;32(4):e155.
- 4. Frymoyer A, Hersh AL, El-Komy MH, et al. Antimicrob Agents Chemother 2014;58(11):6454-6461
- 5. Ploessl C, White C, Manasco K, et al. Pediatr Infect Dis J. 2015;34:e244-e247
- Álvarez R, López cortés LE, Molina J, et al. Antimicrob Agents Chemother. 2016;60(5):2601-9.
- 7. McNeil JC et al. Pediatr Infect Dis J. 2016:35:263. 8. Sinclair EA, Yenokyan G, McMunn A, et al. Ann Pharmacother. 2014;48(2):1555-1562
- 9. Le J, et al.. J Peds Infect Dis Soc. 2014. 4(4):109-116
- 10.Rybak, MJ, Le J, Lodise TP, et al. Am J Health-Syst Pharm.2020;77:835