

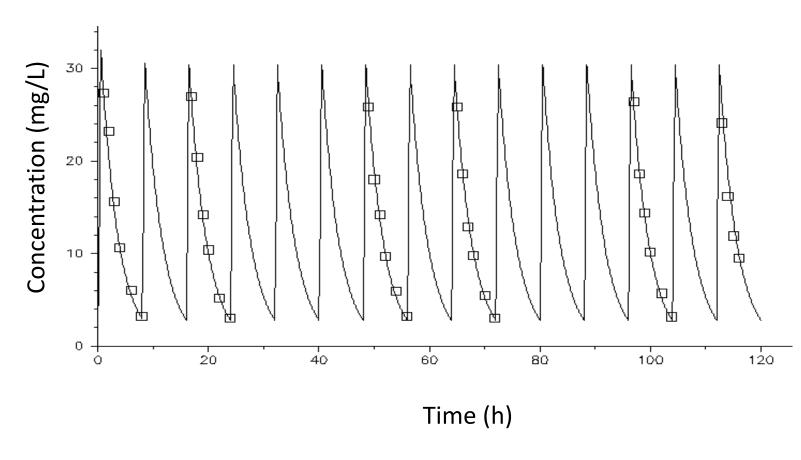
MIC Profiling of Ceftazidime-Avibactam (CAZ/AVI) Against Two Carbapenemase-producing Klebsiella pneumoniae Isolates

Andrei Zidaru, PharmD^{1,3}, Brianna M. Eales, MS³, Weiqun Wang, PhD³, Paul R. Merlau, MS³, Todd M. Lasco, PhD², Amelia K. Sofjan, PharmD³, Vincent H. Tam, PharmD² ¹Baylor St. Luke's Medical Center, Department of Pharmacy, ²Department of Pathology, Houston, Texas, ³University of Houston College of Pharmacy Department of Pharmacy Practice and Translational Research

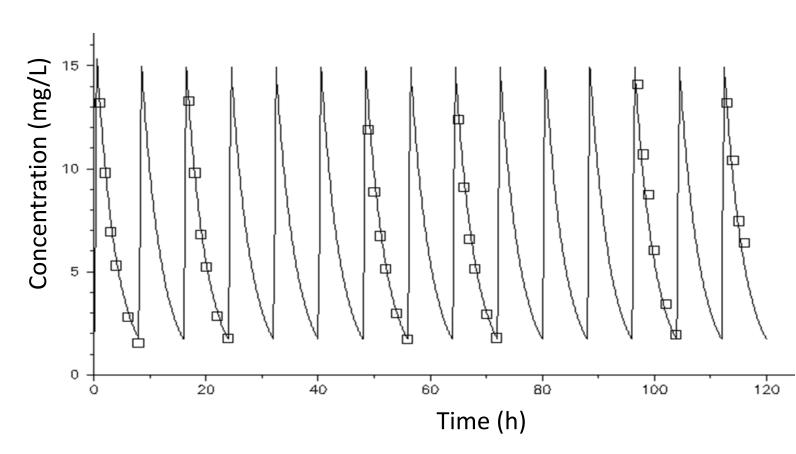
BACKGROUND

- Carbapenemases confer resistance against a broad range of β -lactams with a prevalence of 40-60% among carbapenem-resistant Enterobacteriaceae.
- CAZ-AVI is commonly used to treat infections due to carbapenemase-producing Enterobacteriaceae, typically guided by susceptibility testing with a single AVI concentration.
- This methodology does not take into consideration varying inhibitor concentration observed *in vivo* and may not reliably predict positive clinical outcomes.

OBJECTIVE


To investigate a novel susceptibility testing method to guide CAZ-AVI therapy.

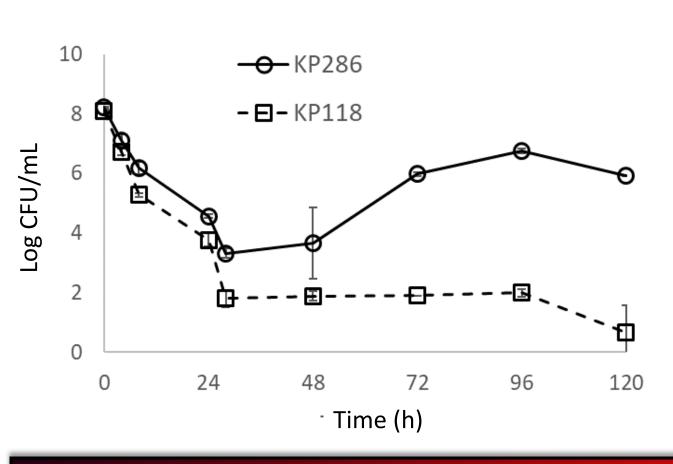
METHODS


- Two bloodstream K. pneumoniae isolates (CAZ/AVI susceptible) from an abdominal source were recovered from 2 unrelated patients.
- Both patients were treated with CAZ/AVI, but had discordant outcomes: KP118 (eradication within 24h) and KP286 (persistent bacteremia for over 30 days).
- Carbapenemase production in the 2 isolates was confirmed via Carba NP test, and CAZ susceptibility was determined in a clinically relevant range of AVI concentration (0 - 16 mg/L).
- The concentration-response was characterized by the sigmoid inhibitory maximum effect (Emax) model.
- The best-fit parameter values were used to predict %T>MICi associated with CAZ/AVI exposures expected in peritoneal fluid after standard dosing (2.5g q8h).
- These CAZ/AVI exposures were simulated in the hollow-fiber infection model (HFIM), and the bacterial responses were correlated to observed clinical outcomes

RESULTS							
Table 1: Best-fit parameters of the concentration-effect relationship							
Bacteria	β-lactam	β-lactamase inhibitor	log ₂ (MIC ₀)	I _{max}	<i>IC</i> ₅₀	Н	r²
KP118	Ceftazidime	Avibactam	9.00	12.06	0.96	0.79	0.99
KP286	Ceftazidime	Avibactam	6.98	10.51	2.40	1.07	0.99

Figure 1: Simulated ceftazidime exposures in hollow-fiber infection model

Figure 2: Simulated avibactam exposures in hollow-fiber infection model


Vincent H. Tam, PharmD University of Houston College of Pharmacy 4849 Calhoun Rd, Houston, TX 77204 E-mail: vtam@uh.edu

Target Cmax = 30 mg/L Target half-life = 2.5 h

 $R^2 = 0.984$ Best-fit Cmax = 31 mg/L Best-fit half-life = 2.2 h

Figure 3: Bacterial responses to simulated CAZ/AVI exposures

RESULTS

CONCLUSIONS

- Considerable reduction in bacterial burden was observed within 24h for both isolates.
- Sustained suppression of KP118 was observed over 5 days, but not with KP286.
- MIC profiling better reflects bacterial response to changing β-lactamase inhibitor concentrations *in vivo* and is expected to be more robust than conventional susceptibility testing in predicting favorable patient outcome.

DISCLOSURES/FUNDING

- Authors have no conflicts of interests regarding personal or financial relationships with commercial entities that may have influenced the content or subject matter of this presentation
- This study was supported by in part by the National Institutes of Health (R01AI140287-02).

REFERENCES

A complete reference list will be made available upon request.

Target Cmax = 15 mg/L Target half-life = 2.5

 $R^2 = 0.978$ Best-fit Cmax = 15 mg/L Best-fit half-life = 2.4 h