




# <u>Cl</u>inical implications of <u>a</u>zole-<u>r</u>esistant aspergillosis in hematological malignancy: a multi-center study

Danila Seidel<sup>1</sup>, Oliver A. Cornely<sup>1</sup>, Marouan Zarrouk<sup>1</sup>, Philipp Köhler<sup>1</sup>, Jacques F. Meis<sup>2</sup>, Jon Salmanton-Garcia<sup>1</sup>, J. Janne Vehreschild<sup>1</sup>, Martin Christner<sup>3</sup>, Stefanie Gräfe<sup>1</sup>, Iker Falces-Romero<sup>4</sup>, Agustín Reséndiz Sharpe<sup>5</sup>, Katrien Lagrou<sup>5</sup>, Johan Maertens<sup>5</sup>, Zdenek Racil<sup>6</sup>, Barbora Weinbergerova<sup>6a</sup>, Maricela Valerio<sup>7</sup>, Ola Blennow<sup>8</sup>, Blandine Rammaert-Paltrie<sup>9</sup>, Alen Ostojic<sup>10</sup>, Yohann Le Govic<sup>11</sup>, Cornelia Lass-Flörl<sup>12</sup>, Susann Rössler<sup>13</sup>, Karin van Dijk<sup>14</sup>, Nick de Jong<sup>14</sup>, Jörg Steinmann<sup>15</sup>, Guillaume Desoubeaux<sup>16</sup>, Nael Alakel<sup>17</sup>, Nikolay Klimko<sup>18</sup>, Enrico Schalk<sup>19</sup>, Marie-Pierre Brenier-Pinchart<sup>20</sup>, Carolina Garcia-Vidal<sup>21</sup>, Anne Bergeron<sup>22</sup>, Sung-Yeon Cho<sup>23</sup>, Willem J.G. Melchers<sup>24</sup>, Maria J.G.T. Vehreschild<sup>1,25</sup>, Paul E. Verweij<sup>24</sup>; for the CLARITY group.

### Background

Survival of patients with invasive aspergillosis (IA) has improved in recent years mainly due to the availability of azole antifungal drugs. Emergence of azole resistance in Aspergillus fumigatus has been noted around the world, challenging patient management. Resistance mechanisms, with differing degrees of cross-resistance, are mainly characterized by point mutations in the *cyp51* gene encoding the target for azoles.<sup>1</sup>

Increased mortality has been noted due to high probability of azole treatment failure in patients with azole-resistant isolates. However, the clinical implications of azole-resistant (arIA) compared to azole-susceptible IA (asIA) remain less well studied.

Abbreviations: Abbreviation: AFT, systemic antifungal treatment; ALL, Acute lymphoblastic leukemia; AML, Acute myeloid leukemia; HSCT, Hematopoietic stem-cell transplantation; ICU, Intensive care unit; MDS, Myelodysplastic Syndrome

**Table 2:** Length of antifungal use for prophylaxis and treatment provided in days, median (interquartile range); **Treatment response**: Success (complete or partial response), Failure (stable disease, progression)

Table 1. Neutropenia before diagnosis of invasive aspergillosis; <sup>1</sup> Underlying condition (Other): Myelodysplastic syndrome, Aplastic Anaemia, Myelofibrosis, Evans syndrome; § Cmorbidities include: chronic liver disease, chronic renal disease, chronic pulmonary

disease, diabetes mellitus, recent viral pneumonia, and rheumatic/autoimmune diseases; <sup>2</sup> Site of infection (Other): arIA: Peritoneum, bowel (1), eye (1), heart (1); asIA: paranasal sinus (7) + eye (1), deep Soft Tissue (5), Liver + spleen (3), kidney + GIT (1)

## Objectives

- Assess clinical implications of IA caused by azole-susceptible vs. azole-resistant A. fumigatus
- Determine the efficacy of antifungal therapy in patients with azole-resistant IA (arIA) vs. azole-susceptible IA (asIA)

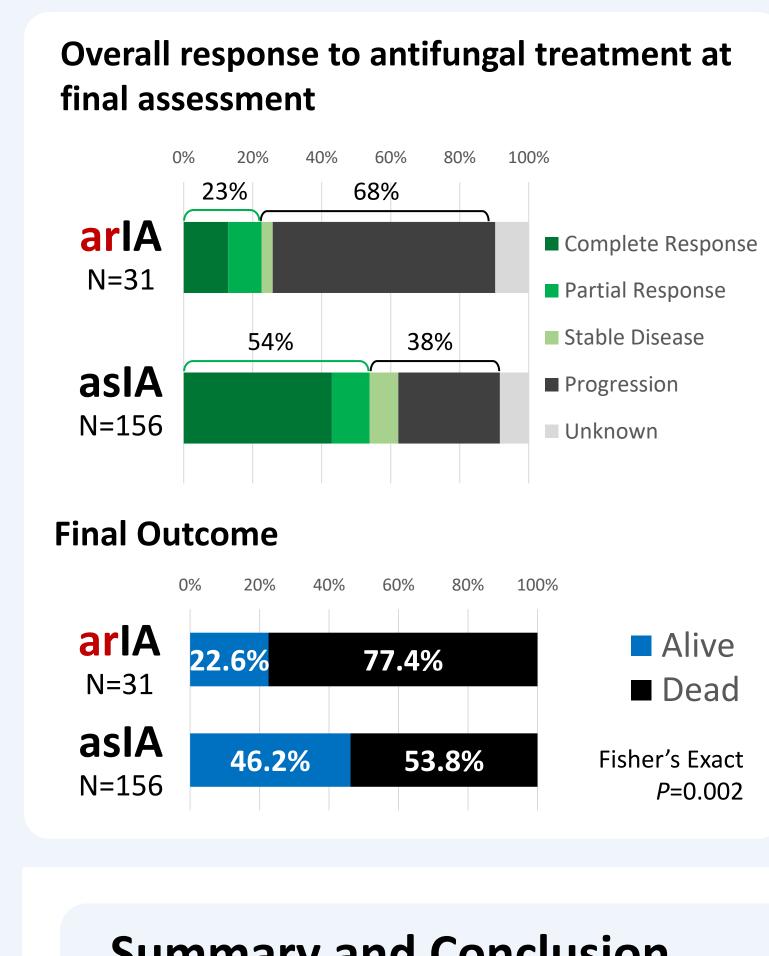
#### **Inclusion criteria**

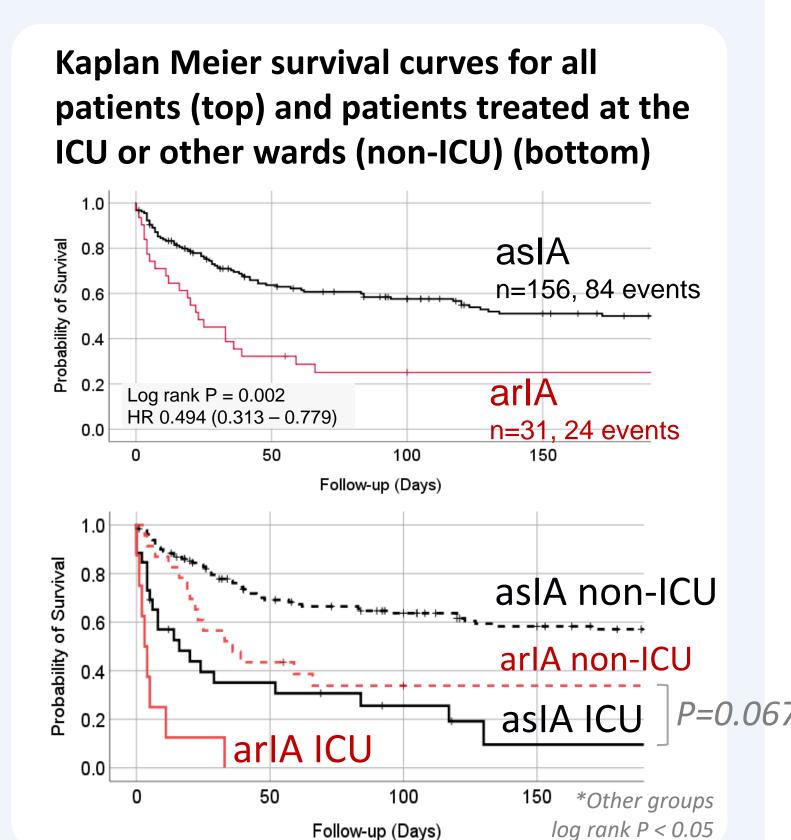
- Patients with a hematological malignancy
- · Proven or probable IA<sup>2</sup> caused by *A. fumigatus* diagnosed in 2010 or later
- Fungal clinical isolate AND/OR susceptibility results confirming azole-resistance AND/OR genetic alterations associated with azole-resistance identified

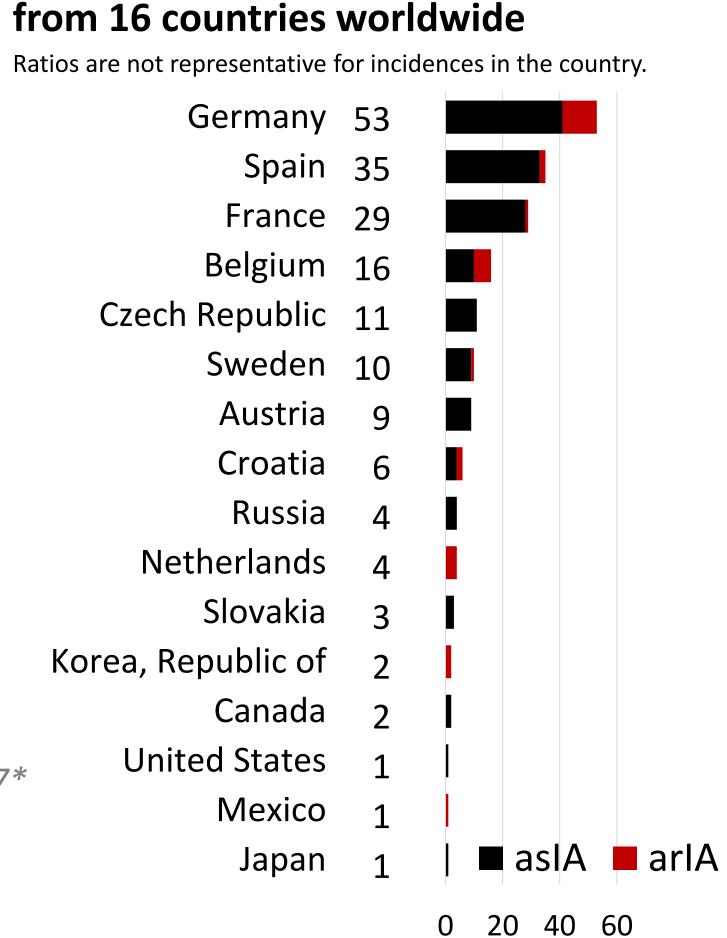
#### Methods

- 1. Retrospective, anonymized documentation of clinical data in a web-based case report form accessible through www.clinicalsurveys.net
  - Demographics, underlying disease
  - Diagnostics, antifungal susceptibility
- Antifungal therapy, response and outcome
- 2. Collection of clinical fungal isolate for
- Antifungal susceptibility testing (EUCAST)
- Analysis of resistance mechanisms (cyp51A)

#### Results


Table 1. Characteristics of 31 arlA and 156 aslA cases


|                        |            | arlA<br>n=31     |     | asIA<br>n=156 |   |
|------------------------|------------|------------------|-----|---------------|---|
|                        | N          | %                | N   | %             |   |
| Male (%)               | 22         | 71.0             | 102 | 65.4          |   |
| Adult (≥17 years)      | 29         | 93.5             | 149 | 95.5          |   |
| Underlying conditions, | Risk Facto | ors <sup>°</sup> |     |               |   |
| Malignancy             |            |                  |     |               |   |
| Acute Leukemia         | 13         | 41.9             | 61  | 39.1          |   |
| Chronic Leukemia       | 2          | 6.5              | 14  | 9.0           |   |
| Lymphoma               | 4          | 12.9             | 39  | 25.0          |   |
| Multiple Myeloma       | 2          | 6.5              | 13  | 8.3           |   |
| MDS                    | 5          | 16.1             | 18  | 11.5          |   |
| Other <sup>1</sup>     | 5          | 16.1             | 11  | 7.1           |   |
| Chemotherapy           | 26         | 83.9             | 149 | 95.5          | * |
| allogeneic HSCT        | 18         | 58.1             | 61  | 39.1          |   |
| autologous HSCT        | 4          | 12.9             | 14  | 9.0           |   |
| <b>Comorbidities</b> § | 9          | 29.0             | 58  | 37.2          |   |
| Neutropenia            | 17         | 54.8             | 93  | 59.6          |   |
| <10 days               | 3          | 9.7              | 23  | 14.7          |   |
| ≥10 days               | 14         | 45.2             | 70  | 44.9          |   |
| ICU stay               | 8          | 25.8             | 26  | 16.7          |   |
| Sites of infection     |            |                  |     |               |   |
| Lung                   | 31         | 100.0            | 145 | 92.9          |   |
| CNS                    | 3          | 9.7              | 7   | 4.5           |   |
| Other <sup>2</sup>     | 3          | 9.7              | 17  | 10.9          |   |
| Disseminated           | 4          | 12.9             | 11  | 7.1           |   |


Table 2. Antifungal treatment and outcome

|                         | arIA<br>n=31   |      | asIA<br>n=156 |      | P |
|-------------------------|----------------|------|---------------|------|---|
|                         | N              | %    | N             | %    |   |
| Antifungal prophylaxis  | 9              | 29.0 | 22            | 14.1 |   |
| Azole                   | 9              | 29.0 | 18            | 11.5 |   |
| Other                   | 0              | 0.0  | 6             | 3.8  |   |
| Length overall, days    | 92 (68 - 183)  |      | 16 (10 - 35)  |      | * |
| Treatment strategy      |                |      |               |      |   |
| AFT + surgery           | 0              | 0.0  | 12            | 7.7  |   |
| AFT only                | 30             | 96.8 | 139           | 89.1 |   |
| Surgery only            | 0              | 0.0  | 1             | 0.6  |   |
| None                    | 1              | 3.2  | 4             | 2.6  |   |
| Antifungal treatment    |                |      |               |      |   |
| Amphotericin B          | 24             | 77.4 | 76            | 48.7 | * |
| Voriconazole            | 20             | 64.5 | 120           | 76.9 |   |
| Other azoles            | 8              | 25.8 | 42            | 26.9 |   |
| Caspofungin             | 7              | 22.6 | 40            | 25.6 |   |
| Other echinocandins     | 3              | 9.7  | 9             | 5.8  |   |
| Length overall, days    | 27 (10.5 - 53) |      | 46 (16 - 129) |      |   |
| Treatment response and  | l mortality    | 1    |               |      |   |
| Success                 | 7              | 22.6 | 84            | 53.8 | * |
| Failure                 | 21             | 67.7 | 59            | 37.8 |   |
| Unknown response        | 3              | 9.7  | 13            | 8.3  |   |
| Mortality               | 24             | 77.4 | 84            | 53.8 | * |
| Follow-up, days [median | (IQR)]         |      |               |      |   |
| Overall                 | 23 (5 - 66)    |      | 83 (19 - 255) |      |   |
| Dead overall            | 17 (4 - 33)    |      | 30 (8 - 119)  |      | * |

Figure 1. Clinical Response at Final Assessment and Patient Outcome







Number of cases included in CLARITY

# **Summary and Conclusion**

- Most common risk factor for arIA and asIA in hematological oncological patients was acute leukemia (Table 1)
- Mortality was highest in patients with arIA treated in the ICU (100% vs. 80.8% in ICU patients treated for asIA, P=0.309)
- Median survival time was 3 days (95%Cl 0.228 5.772) for arlA and 16 days (95%Cl 0 34.025) for aslA patients treated in the ICU; HR 0.346 (95%CI 0.146 – 0.824) in favor of **asIA**
- Azole resistance in A. fumigatus was an independent predictor for mortality in patients with underlying malignancy



\* P value <0.05, if not marked P value was >0.05



