

Clinical Impact of Tocilizumab Therapy in SARS-CoV-2 Respiratory Infections in ICU and non-ICU Patients

HOME OF SIDNEY KIMMEL MEDICAL COLLEGE

Nikunj Vyas, PharmD, BCPS¹; Cindy Hou, DO, MA, MBA, FACOI, FACP²; Todd Levin, DO, FACOI, FIDSA²; Joseph Derose, DO²; Mark Fussa, DO, FACOI²; Mark Condoluci, DO, FACOI²; Michael Barnish, DO, FACOI²; Zeina Ghayad, DO, FACOI²; James R. Williams, MD²; Shereef Ali, PharmD, BCPS, BCCCP¹; Scott Scheiblein, PharmD¹; Kathryn Kerr, PharmD¹; Anthony Fryckberg, PharmD, BCPS, BCCCP¹; Gauri, Chauhan, PharmD¹

1. Department of Pharmacy, Jefferson Health - New Jersey, Cherry Hill, NJ, 2. Department of Infectious Diseases, Jefferson Health - New Jersey, Voorhees, NJ

Purpose

No therapy is approved for COVID-19 pneumonia. The aim of this study was to assess the clinical impact of tocilizumab (TCZ) in managing severe respiratory infections by SARS-CoV-2 in patients admitted to ICU and non-ICU.

Background

- There has been a strong inverse correlation between the need of supplemental oxygenation and fatality rates with COVID-19 with recent review documenting mortality rate up to 57% in ICU patients.
- TCZ was used as an investigational medication for management of cytokine release syndrome (CRS) in respiratory infections caused by COVID-19 at our institution.
- Following institutional criteria was set for patients to receive TCZ in CRS:
 - COVID-19 positive
 - ClinicRapidly worsening respiratory gas exchange AND SpO $_2 \le 93\%$ on room air OR > 6 L/min O $_2$
 - At least three of the following laboratory findings:
 - Fever $> 38^{\circ}$ C
 - Elevated CRP (>10 mg/L) or > 50% increase with clinical worsening
 - Elevated D-dimer > 1 ug/dl
 - Ferritin > 500
- The dosing strategy was determined at 8 mg/kg x 1 dose with consideration of giving additional dose 24 hours after if clinically warranted (maximum 2 doses).

Methods

- TCZ was offered to patients if they met criteria for use in CRS after review by antimicrobial stewardship and infectious diseases service.
- Patients were included if they were ≥ 18 years old, admitted with SARS-CoV-2 respiratory infection in CRS and received at least one dose of TCZ.
- Patient were excluded if they expired or transferred within 48 hours of administration of TCZ.
- Primary endpoint of the study was to assess clinical improvement (CI) at the end of admission.
 - CI was defined by extubation, downgrade from ICU, discharged or improvement in Clinical Ordinal Scale (COS) by 2 during admission.
- Secondary endpoint of the study was to assess inpatient mortality (IM) and risk factors associated with IM.
 - Subgroup analysis included impact of early (< 96 hours) vs late (>=96 hours) therapy on IM.

Figure 1. Study Design N = 19Excluded from Analysis N = 189(Expired via comfort care or **Included** in transferred within 48 hours **Total Number** of Tocilizumab) **Intention To** of Patients Treat Analysis **Evaluated** 3/25/20-5/6/20 Received at least N=1701 dose of Included in Intention to **Tocilizumab** Treat Analysis

Results

Table 1: Baseline Demographics

	TCZ Non-ICU	TCZ ICU	P value
	N=83	N=87	
Age, mean years	63.6	63.6	NS
Sex, % male	67.5%	62%	NS
LOS, mean (Days)	9.2	16.5	0.0001
BMI, mean	28.4	32.5	0.001
Tocilizumab			
Dose 1, mean	575 mg	625 mg	
Mg/kg, mean	8 mg/kg	7.7 mg/kg	
Dose 2, mean	320 mg	360 mg	
Mg/kg, mean	4 mg/kg	4.4 mg/kg	
Received 2 doses, %	67.5%	82.7 %	0.001
Day from illness to hospitalization,	6 1	5.7	0.15
mean	6.4	3.7	
Day of admission to dose	2	4	
administered, mean	3	4	NS
Oxygenation at day of toci %			
HFNC / NC	78%	40%	0.03
Oxymizer	4%	11.5%	0.02
IPPV	2.5%	3.4%	NS
IMV	0%	45%	0.001
RA	11%	0%	0.01
Hydroxychloroquine, %	47%	73.5%	0.001
Corticosteroids, %	45.1%	51.7%	0.67

Table 2: Clinical Outcomes

	TCZ Non-ICU N=83	TCZ ICU N=87	P value
Clinical Improvement, %	85.5%	57.5%	0.002
% Inpatient Mortality Cause of death	8.4%	28.7%	0.0014
Cardiac Arrest	28.6%	52%	
Comfort Care	71.4%	48%	

Table 3: Subgroup Analysis

Table 4: Risk Factor Association to IM

	TCZ P	atients	P value		Odds	95 % Confidence
	Toci ≤ 96 hours	Toci > 96 hours			ratio	interval
Overall Mortality	17 %	25.7 %	0.24	ICU	6.17	[2.4, 15.9]
ICU Mortality	26.9 %	35 %	0.58	Admission		
Non-ICU Mortality	7.4 %	13.3 %	0.60	BMI	1.13	[1.02, 1.24]
IMV Mortality	29 %	33.3 %	1.0	ΛΚΤ		
Non-IMV Mortality	13.6 %	23.1 %	0.24	During Admission	4.22	[1.7, 10.2]

Table 5: COS analysis

	TCZ Non-ICU N=83	TCZ ICU N=87	COS: Clinical Ordinal Scale	
COS, day 7			1 = discharge w/ resumption	
COS – 1, %	4.8%	3.8%	normal activity	
COS – 2, %	2.4%	2.5%		
COS – 3, %	14.3%	5%		
COS – 4, %	33.7%	12.5%	2 = discharge w/out resumption	
COS – 5, %	0%	20%	normal activity	
COS – 6, %	0%	45.5%		
COS – 7, %	4.8%	11.2%	3 = non-ICU not requiring O2	
COS @ End of Stay		.		
COS – 1, %	51.8%	26.7%	4 = non-ICU requiring O2	
COS – 2, %	26.5%	19.8%	5 = ICU not requiring IMV	
COS – 3, %	2.4%	3.5%	3 – 100 not requiring nvi v	
COS – 4, %	8.4%	7.0%	6 = ICU requiring IMV	
COS - 5, %	0%	2.3%		
COS - 6, %	0%	10.5%	7 = Death	
COS – 7, %	8.4%	28.7%		

Discussion

- Of the patients who received TCZ, more patients in ICU were likely to be obese, receive 2 doses of it, requiring IMV and have longer length of stay.
- Overall CI was noted at 71%; however, as expected, non-ICU patients had much better clinical outcomes compared ICU.
- Risk factors of ICU admission, BMI > 30 kg/m2 and AKI during admission were associated with higher risk of mortality.
- No differences were observed in patients receiving early vs late TCZ therapy, however, there were trends towards better outcomes in early TCZ therapy.
- Patient on HFNC/NC or oxymizer responded much better than those who needed IMV.
- Patients receiving corticosteroids had lower mortality however there was no associated noted with respect to IM.
- Our criteria allowed for use of TCZ in patients requiring supplemental oxygen and impact was noted in CI of these patients. None of the patients received remdesivir concomitantly.
- We didn't evaluate the rates of super infections noted after TCZ therapy however, most common side effect of therapy was transaminitis seen in 21% of patients.
- Our study didn't have a comparison group since this was not a clinical trial and a study with a controlled comparison group would lead to data that would give us more insight into the most appropriate place in therapy for TCZ for COVID-19.
- There was co-administration of hydroxychloroquine and corticosteroids which may have impacted clinical outcomes.

Conclusions

- Overall TCZ therapy led to much better CI compared what has been published in literature for patients with severe SARS-CoV-2 respiratory infections.
- ICU admission, obesity and AKI were associated with high rates of IM.
- Early therapy with TCZ didn't show improvement in CI or IM.
- Larger randomized controlled trials are needed to determine the benefit of TCZ for COVID-19.

References

- NIH COVID-19 Guidelines. https://www.covid19treatmentguidelines.nih.gov/whats-new/
- Lancet Rheumatol 2020; 2: e603-12 https://doi.org/10.1016/S2665-9913(20)30277-0