

Incorporating clinical guidance into computerized prescriber order entry (CPOE) may reduce fluoroquinolone utilization for the treatment of diverticulitis at a rural community health system

Miller B, PharmD, Logsdon J, PharmD, BCIDP, Tirupathi R, MD, FACP

WellSpan Chambersburg Hospital and WellSpan Waynesboro Hospital, South Central PA

Poster Number: 236

BACKGROUND

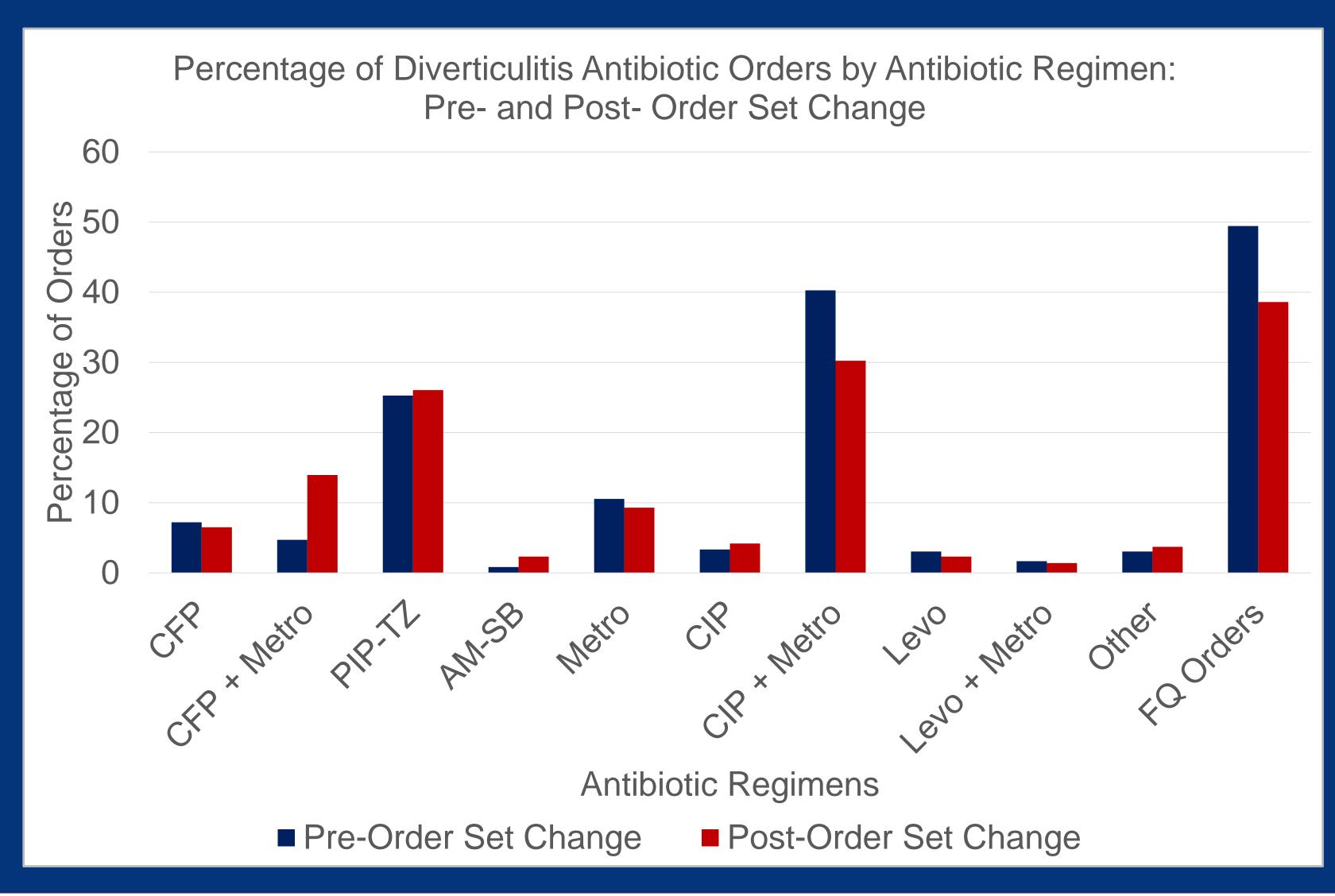
- In recent years, fluoroquinolone antibiotics have been associated with an increased rate of bacterial resistance^{1,2,3}
- Fluoroquinolone antibiotics are also associated with more adverse effects than beta lactam antibiotics, such as QTc prolongation, impaired glycemic control, tendon rupture, and central nervous system effects⁴
- The WellSpan Health antimicrobial stewardship team at WellSpan Chambersburg/Waynesboro Hospitals sought effective strategies for curbing fluoroquinolone usage
- After a drug utilization review at WellSpan Waynesboro Hospital, one of the health system's inpatient facilities, it was determined that diverticulitis accounts for a significant portion of the hospital's fluoroquinolone utilization (e.g. 27% of ciprofloxacin utilization was attributable to diverticulitis)
- The antibiotic section of the institutions' computerized prescriber order entry (CPOE) diverticulitis order set lacked clinical direction for antibiotic selection
- It was hypothesized that optimizing this order set, with more antibiotic selections and more clinical direction, could reduce fluoroquinolone utilization in the treatment of diverticulitis

OBJECTIVE

 To evaluate the efficacy of CPOE order set optimization in reducing fluoroquinolone utilization

METHODS

- This multi-center, uncontrolled before and after study included adult inpatients who received intravenous antibiotics with a coded diagnosis of diverticulitis (ICD-10 code K57) between 1 July, 2017 and 21 April, 2019
- Data collected included patient baseline demographics, antibiotic regimen(s) received during admission, and date antibiotic regimen(s) were ordered
- A change to the antibiotic section of the diverticulitis order set was implemented on 17 September, 2018
- Patients were separated into two groups: those whose antibiotics were ordered between 1 July, 2017 and 30 June, 2018 (pre-order set optimization) and those whose antibiotics were ordered between 17 September, 2018 and 21 April, 2019 (post-order set optimization)
- Ordered antibiotic regimens were compared between these two groups, and analyzed for differences in utilization of fluoroquinolone-containing antibiotic regimens
- Statistical analysis was performed by calculating relative risk with 95% confidence interval and also with the chi-square test
- Microsoft Excel (Redmond, WA) was utilized for data analysis
- This study was approved by institutional review boards (IRBs) at WellSpan Waynesboro/Chambersburg Hospitals


RESULTS/TABLES

Diverticulitis Order Set Pre-Optimization

- Antibiotics
- Piperacillin/Tazobactam
- Ciprofloxacin
- Metronidazole

Diverticulitis Order Set Post-Optimization

- Antibiotics
- First Line (No Penicillin Allergy)
- Piperacillin/Tazobactam
- First Line: Penicillin Allergy (Non-Anaphylactic)
- Cefepime + Metronidazole
- First Line: Penicillin Allergy (Anaphylactic)
- Ciprofloxacin + Metronidazole

Pre-Order Set Optimization:

56%

of patients ordered fluoroquinolones

10% Absolute Risk Reduction

Post-Order Set Optimization: 46%

of patients ordered fluoroquinolones

Patient characteristics Pre-order set optimization (n=316)	
Male	133 (42.1)
Average Age	St. Dev.
69	15.5
Post-order set	optimization (n=178)
Sex	n (%)
Male	61 (34.3)

Average Age

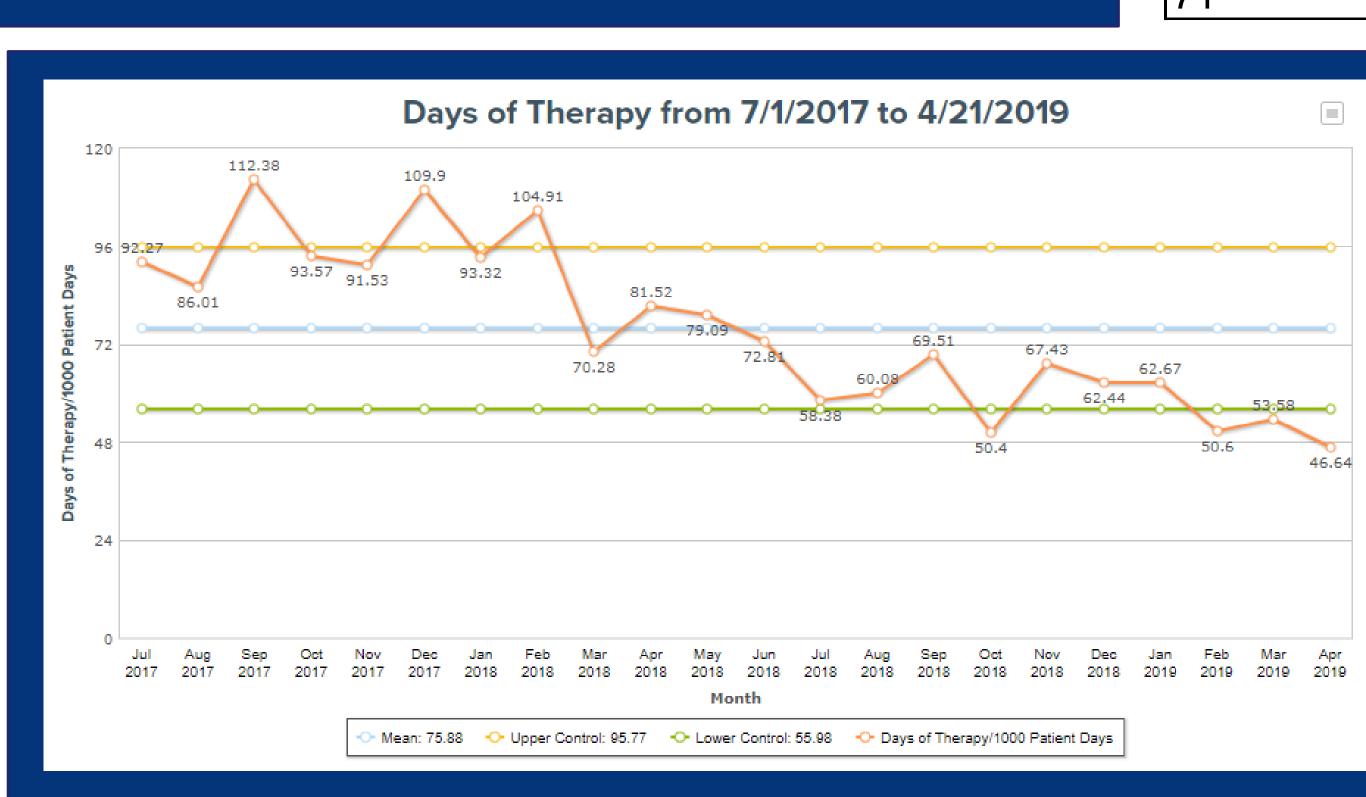
St. Dev

14.7

DISCUSSION/CONCLUSIONS

- A total of 494 patients were included in the study with 316 patients belonging to the pre-order set optimization group and 178 patients belonging to the post-order set optimization group
- 575 different antibiotic regimens were administered to the 494 patients
- The majority of patients were female in both groups of the study
- Fluoroquinolone-containing antibiotic regimens accounted for 39% of antibiotic orders for the post-order set optimization group, and 49% of antibiotic orders for the pre-order set optimization group (RR=0.78; 95% CI 0.64-0.95; p = 0.012)
- 46% of patients in the post-order set optimization group were ordered a fluoroquinolone-containing antibiotic regimen, and 56% of patients in the pre-order set optimization group were ordered a fluoroquinolone-containing antibiotic regimen (RR=0.82; 95% CI 0.68-0.99, p = 0.028)
- Limitations of this study include the influence of our antimicrobial stewardship program on antibiotic selection, limited size of the post-order set optimization group, and limited utilization of the diverticulitis order set
- Results from this study suggest that optimizing the antibiotic section of the diverticulitis order set achieved a reduction in fluoroquinolone utilization as evidenced by statistically significant reductions in the number of patients receiving fluoroquinolones and antibiotic regimens containing fluoroquinolones
- One possible explanation for the continued use of ciprofloxacin + metronidazole is that prescribers may prefer this combination as it is easier to transition to oral antibiotic therapy

FUTURE DIRECTIONS


- Perform subgroup analysis on patients whose antibiotics were ordered using the diverticulitis order set
- Examine the effects of order set optimization on other order sets related to infectious diseases

AUTHOR DISCLOSURES

All authors: Nothing to disclose

REFERENCES

- 1. Hooper D. Emerging Infectious Diseases. 2001;7(2):337-41.
- 2. Jacoby G. Clinical Infectious Diseases. 2005;41(2):S120-6.
- 3. Goettsch W, et al. *Journal of Antimicrobial Chemotherapy*. 200;46(2):223-8.
- 4. Lexicomp Online, Lexi-Drugs. Ciprofloxacin. Hudson, Ohio: Lexi-Comp, Inc. Accessed 26 November, 2018.

