
IDWeek 2020 October 21-25

Implementing an At-Home Smell Test for Early Assessment of COVID-19 in High-Risk Healthcare Workers

Julian J Weiss¹, Tuki N. Attuquayefio¹, Elizabeth B. White², Fangyong Li², Rachel S. Herz³, Theresa L. White^{4,5}, Melissa Campbell¹, Bertie Geng¹, Rupak Datta¹, Anne L. Wyllie², Nathan D. Grubaugh², Arnau Casanovas-Massana², M. Catherine Muenker², Adam J. Moore², Ryan Handoko¹, Akiko Iwasaki¹, the Yale IMPACT Research Team, Richard A. Martinello¹, Albert I. Ko², Dana M. Small¹, and Shelli F. Farhadian¹

¹Yale School of Medicine, New Haven, CT, USA. ²Yale School of Public Health, New Haven, CT, USA, ³Warren Alpert Medical School of Brown University, Providence, RI, USA, ⁴Le Moyne College, Syracuse, NY, USA, ⁵SUNY Upstate Medical University, Syracuse, NY, USA

Background

- Reduced olfactory sensitivity, or anosmia, has been identified as a common manifestation of COVID-19
- However, smell loss has not yet been prospectively evaluated in asymptomatic and/or pre-symptomatic individuals undergoing regular, frequent SARS-CoV-2 testing
- It is unknown whether monitoring for smell loss can be used to identify asymptomatic infection among high-risk individuals, like healthcare workers (HCW)
- Testing for objective smell loss using standard laboratory or clinical techniques is not feasible for widespread testing, and selfreport surveys are not sufficiently reliable

Objectives

1. To determine if smell sensitivity and loss using an at-home assessment could identify SARS-CoV-2 infection in HCW

Methods

Study Participants

- Physicians, nurses, and other HCW caring for COVID-19 patients in the medical ICU or dedicated COVID-19 units at Yale New Haven Hospital
- Participants were recruited and consented in the IMPACT (Implementing Medical and Public Health Action against Coronavirus) study during the height of the pandemic in Connecticut, between March 31 and July 7, 2020

Data Collected

- SARS-CoV-2 real-time quantitative polymerase chain reaction (RT-qPCR) testing was performed on self-collected nasopharyngeal and saliva specimens every three days
- The Yale Jiffy is an online survey developed to screen for smell loss that can be conducted in under two minutes using readily available household items
- HCW completed an online daily symptom questionnaire that included screening questions for changes in smell and taste.

Statistical Analyses

- Descriptive statistics were used to characterize the study population
- Fisher's exact and Wilcoxon rank-sum tests were used to compare SARS-CoV-2-positive and negative HCW
- We compared HCW reporting smell loss to a well-matched subset of HCW never reporting smell loss

Acknowledgements

The authors are grateful to the study participants for their time and commitment to the study. We thank all members of the staff at the Yale IMPACT Study and to Mr. Brett Wilson for his generous donation to support this project.

Yale IMPACT Research Team authors: Staci Cahill, Edward Courchaine, Christina Harden, Chaney Kalinch, Daniel Kim, Lynda Knaggs, Eriko Kudo, Peiwen Lu, Alice Lu-Culligan, Nida Naushad, Allison Nelson, Isabel M. Ott, Annsea Park, Mary Petrone, Sarah Prophet, Lorenzo Sewanan, Maria Tokuyama, Jordan Valdez, Arvind Venkataraman, Chantal B.F. Vogels, Annie Watkins, Yexin Yang

Funding Statement: This work was supported in part by the National Institutes of Health [K23MH118999 and 1R01Al157488 to SFF], a gift to Yale for DMS from Mr. Brett Wilson, the Beatrice Kleinberg Neuwirth Fund and the Yale Schools of Medicine and Public Health.

Results

FIGURE 1. Flow Diagram of Participants and Reported Changes in Smell by COVID-19
Status

HCW enrolled in IMPACT study

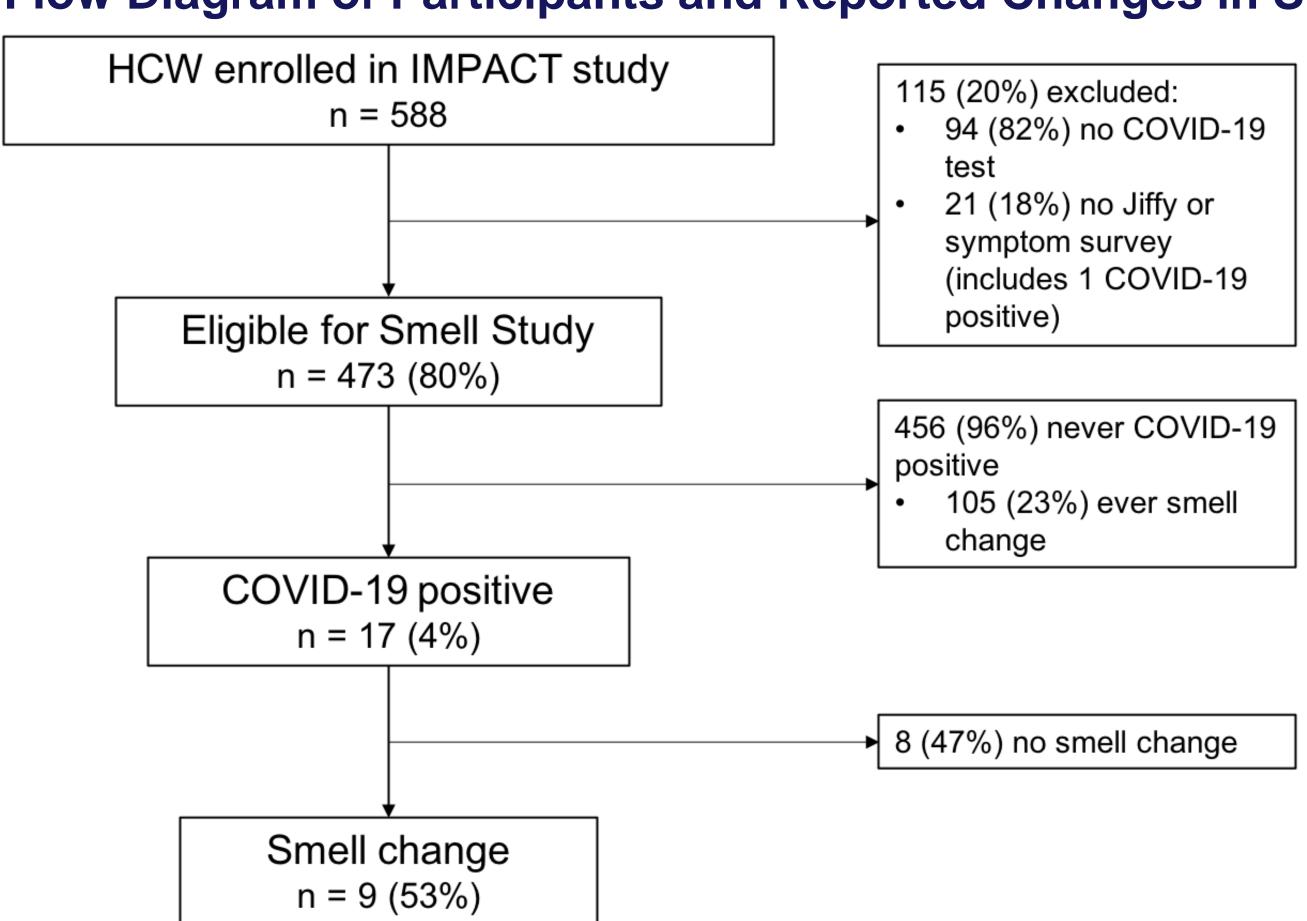
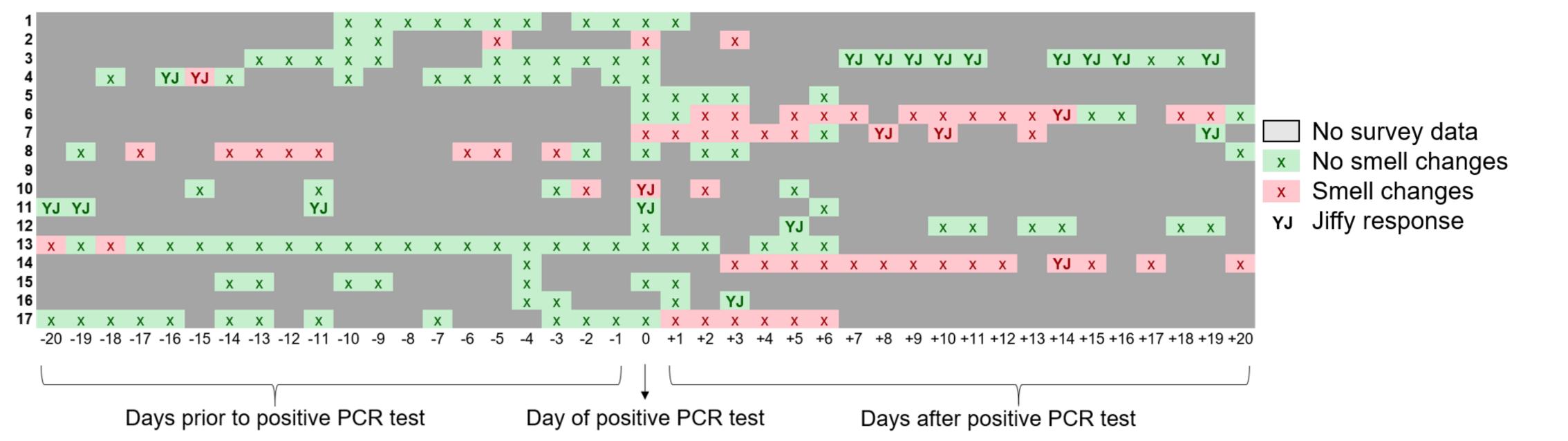



TABLE 1. Baseline Characteristics of Participants in the Smell Sub-Study

	SARS-CoV-2	SARS-CoV-2		
	Positive HCW (n = 17)	Negative HCW (n = 456)	P Value	Adjusted OR (95% CI)
Demographics				
Age, y	30.0 (26.0, 48.0)	34.5 (29.0, 44.0)	0.47	
Female sex	15 (88)	358 (79)	0.54	
Ethnicity			0.84	
White	16 (94)	359 (79)		
Black	0 (0)	15 (3)		
Hispanic	0 (0)	37 (8)		
Asian	1 (6)	36 (8)		
Other	0 (0)	9 (2)		
BMI, kg/m ²	25.0 (22.2, 35.2)	24.7 (22.7, 29.1)	0.74	
Occupation			0.01	- -
RN	15 (88)	246 (54)		
MD	0 (0)	98 (21)		
Other	2 (12)	112 (25)		
Number of surveys	completed			
Symptom survey	10.0 (6.0, 22.0)	22.0 (10.0, 34.0)	0.08	
Yale Jiffy	1.5 (1.0, 4.5)	8 (2.0, 24.0)	0.03	
Smell loss				
Yale Jiffy	5/9 (56)	43/304 (14)	0.005	
Symptom survey	8/17 (47)	83/456 (18)	0.008	
Either survey	9/17 (53)	105/456 (23)	0.009	4.52 (1.61, 13.3)

FIGURE 2. Chronology of Smell Changes among COVID-positive Healthcare Workers relative to day of positive test

Results

FIGURE 3. Self-reported Severity of Smell Loss on the Yale Jiffy by COVID-positive and COVID-negative Healthcare Workers

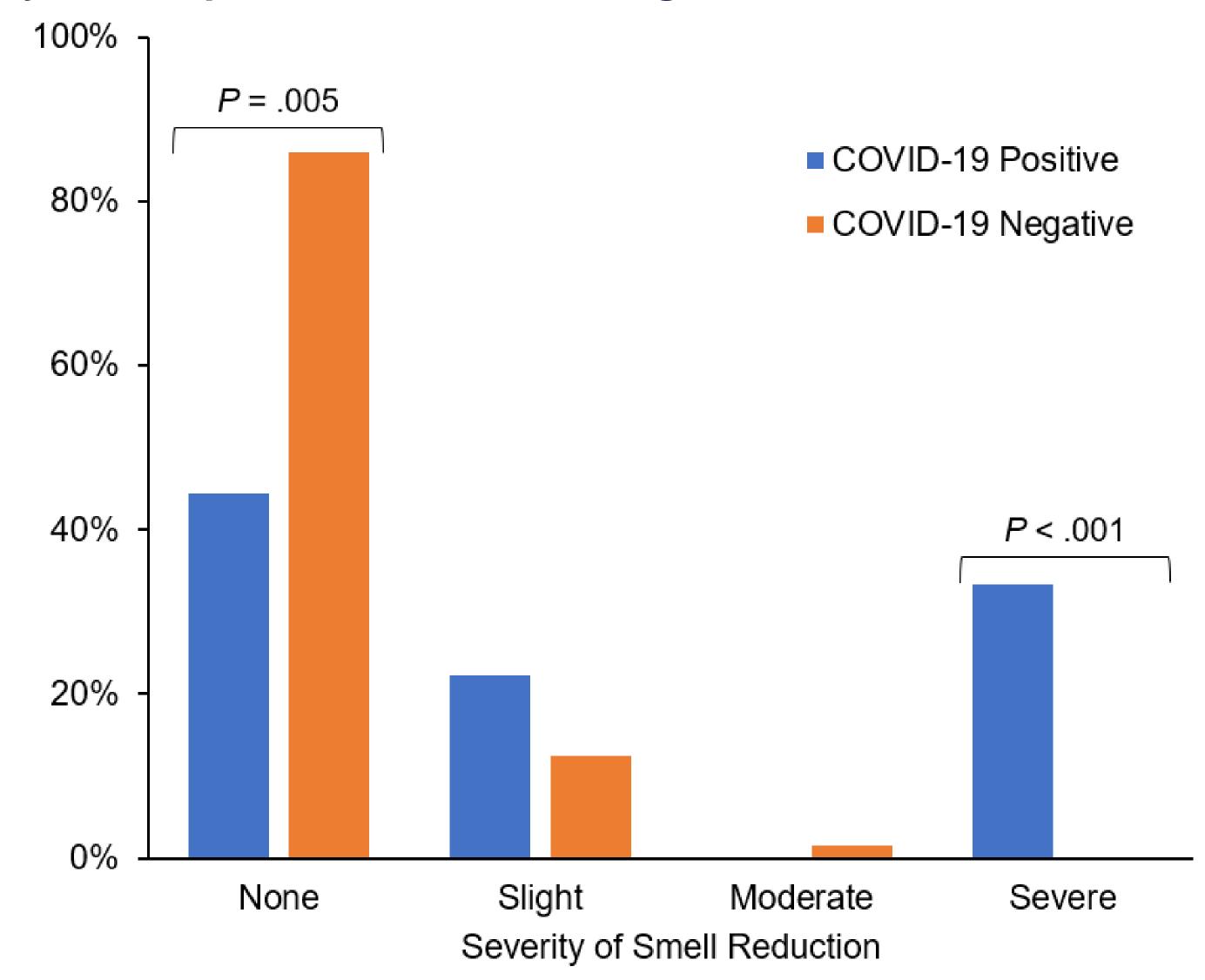


TABLE 2. Characteristics of SARS-CoV-2 Positive Healthcare Workers by Reported Smell Change

	Smell Change (n = 9)	No Smell Change (n = 8)	P Value
Cycle threshold, mean (SD)	27.7 (4.9)	30.2 (3.5)	0.28
Age, y	34 (30, 59)	26.5 (25.8, 33.8)	0.054
Female sex	9 (100)	6 (75.0)	0.21
Non-white race	0 (0)	1 (12.5)	0.47
BMI, kg/m ²	26.6 (22.3, 35.5)	23.7 (22.6, 27.7)	0.71
Smell change as presenting symptom	3 (33.3)		
Any neurological symptoms	9 (100)	3 (37.5)	0.009
Neurological symptoms > 7 days after positive test	4 (44.4)	1 (12.5)	0.29

Data are presented as median (IQR) for continuous variables and no. (%) for categorical variables unless otherwise indicated

Conclusions

- HCW with SARS-CoV-2 infection were more likely to report smell loss than those without SARS-CoV-2 infection
- 67% reported smell loss prior to having a positive SARS-CoV-2 test, and smell loss was reported a median of two days before testing positive
- Neurological symptoms were reported more frequently among SARS-CoV-2-positive HCW who reported smell loss compared to those without smell loss
- Self-reported changes in smell perception were predictive of SARS-CoV-2 infection in a healthcare worker population
- At-home smell assessments should be considered for noninvasive screening of groups that are at high risk for COVID-19