Evaluation of the BioFire® Bone and Joint Infection (BJI) Panel for the Detection of Microorganisms and Antimicrobial Resistance Genes in Synovial Fluid Specimens

C. Graue¹, B. Schmitt², A. Waggoner², F. Laurent³, L. Abad³, T. W. Bauer⁴, I. Mazariegos⁴, J.M. Balada-Llasat⁵, J. Horn⁵, D. Wolk⁶, A. Jefferis⁶, M. Hermans⁷, I. Verhoofstad⁷, S. Butler-Wu⁸, M. Umali-Wilcox⁸, C. Murphy⁹, B. Cabrera⁹, J. Esteban¹⁰, A. Macias-Valcayo¹⁰, D. Craft¹¹, B. von Bredow¹¹, A. Leber¹², K. Everhart¹², J. Dien Bard¹³, J. Mestas¹³, J. Daly¹⁴, B. Barr¹⁴, B. Pons¹⁵, C. Jay¹⁵, B. Kensinger¹

1 BioFire Diagnostics, LLC, Salt Lake City, UT, USA, 8 University of Southern California, Los Angeles, CA, USA, 9 Hospices Civils de Lyon, Lyon, France, 4 Hospital, Den Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 1 Hospices Civils de Lyon, Lyon, France, 4 Hospital, Den Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 3 Hospices Civils de Lyon, Lyon, France, 4 Hospital, Den Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 3 Hospices Civils de Lyon, Lyon, France, 4 Hospital, Den Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 5 The Ohio State University of Southern California, Los Angeles, CA, USA, 5 The Ohio State University of Southern California, Los Angeles, CA, USA, 6 Geisinger Health, Danville, PA, USA, 7 Jeroen Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 7 Jeroen Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 9 Jeroen Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 9 Jeroen Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 9 Jeroen Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 9 Jeroen Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 9 Jeroen Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 9 Jeroen Bosch, The Netherlands, 8 University of Southern California, Los Angeles, CA, USA, 9 Jeroen Bosch, The Netherlands, 9 Jeroen Bosch, The Netherlands, 9 Jeroen Bosch, The Netherlands, 9 Jeroen Bosch, 10 Jeroen Bos 9 University of Nebraska Medical Center Omaha, NE, USA, 10 Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain, 11 The Milton S. Hershey, PA, USA, 12 Nationwide Children's Hospital, Columbus, OH, USA, 14 Primary Children's Hospital, Salt Lake City, UT, USA, 15 bioMérieux, Centre Christophe Mérieux Grenoble, France of the control of the cont

Background

Bone and Joint Infections (BJIs) present with non-specific symptoms that may include pain, swelling, and fever and are associated with high morbidity and significant risk of mortality. BJIs can be caused by a variety of bacteria and fungi, including anaerobes and microorganisms that can be challenging to culture or identify by traditional microbiological methods. Clinicians currently rely primarily on culture to identify the pathogen(s) responsible for infection. The BioFire® Bone and Joint Infection (BJI) Panel (BioFire Diagnostics, Salt Lake City, UT) was designed to detect 15 gram-positive (seven anaerobes) and 14 gram-negative bacteria (one anaerobe), two yeast, and eight antimicrobial resistance (AMR) genes from synovial fluid (SF) specimens in about an hour.

A prospective clinical evaluation was conducted between May 2018 and Mar 2020 at 10 US and 3 EU sites (Table 1). A total of 1,544 residual SF specimens were successfully enrolled from unique, individual patients. The enrolled population included both adults and children (Table 2). Performance for bacteria and yeast was determined by comparison to Standard of Care (SoC) testing consisting of bacterial culture at each study site (performed according to each site's routine procedures). Performance for AMR genes was determined by comparison to PCR followed by bidirectional sequencing (performed at BioFire).

Summary

90.6% Sensitivity and 99.8% Specificity for microorganisms compared to culture

100% PPA and 98.8% NPA

for antimicrobial resistance genes compared to molecular methods

> Identification of at least one organism in 15.7% of synovial fluid specimens

Ability to detect multiple types of organisms in a single specimen (i.e. combinations of G+, G-, and yeast)

Potential for higher diagnostic yield than routine culture for on-panel analytes: 76 FP confirmed analyte presence (suggesting the BioFire BJI Panel was correct)

Success rate of 99.6% for obtaining valid results on initial specimen test

Table 1. Participating Study Sites

Site	Site Name	Location		
1	Indiana University	Indianapolis, IN		
2	University of Nebraska Medical Center	Omaha, NE		
3	Hospices Civils de Lyon	Lyon, France		
4	Keck School of Medicine of USC	Los Angeles, CA		
5	Jeroen-Bosch Ziekenhuis	Den Bosch, the Netherlands		
6	Hospital Universitario Fundación Jiménez Díaz	Madrid, Spain		
7	Hospital for Special Surgery	New York, NY		
8	Penn State Hershey Medical and Children's Hospital	Hershey, PA		
9	Ohio State University Wexner Medical Center	Columbus, OH		
10	Geisinger Health	Danville, PA		
11	Children's Hospital Los Angeles	Los Angeles, CA		
12	Nationwide Children's Hospital	Columbus, OH		
13	Primary Children's Hospital	Salt Lake City, UT		

Table 2. Demographics and **Specimen Characteristics**

	Demographics	
	Enrolled	
	1544	
	Sex	
Male		878
Female		666
	Age	
< 91 days		1
91 days - 4 years		22
5 - 15 years		75
16 - 25 years		35
26 - 64 years		774
65+ years		637
	SF Collection Method	
Intraoperative		295
Arthrocentesis		1226
Unknown		23
	Joint Collection Site	
Knee		1204
Hip		207
Shoulder		55
Ankle		10
Spine		2
Other		49
Unknown		17
	Prosthesis	
Yes		442
No		850
Unknown		252

Table 3. Reference Methods

Analyte Type	Primary Reference Method			
Bacterial and yeast	Routine manual and automated microbiological/biochemical methods (performed at source laboratory)			
AMR genes	One PCR assay + sequencing (performed at BioFire)			

Figure 1. Analyte Prevalence

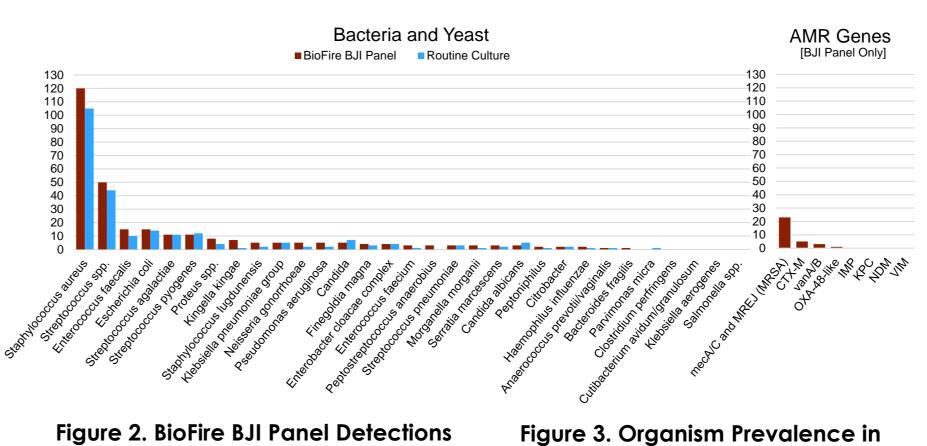


Figure 2. BioFire BJI Panel Detections

Specimens

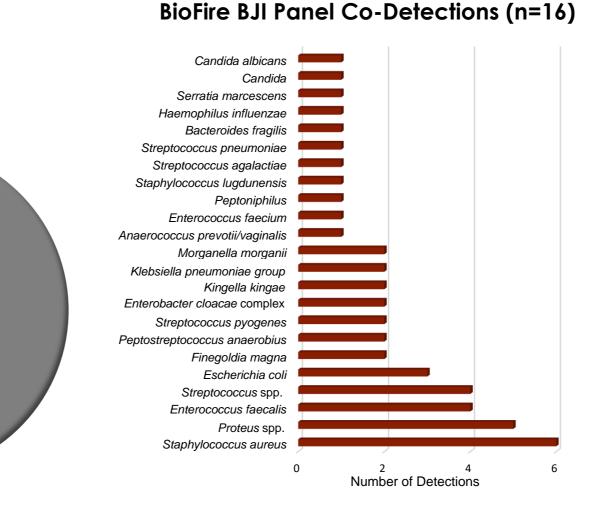


Figure 4. BioFire BJI Panel Detections by Gram Stain Classification

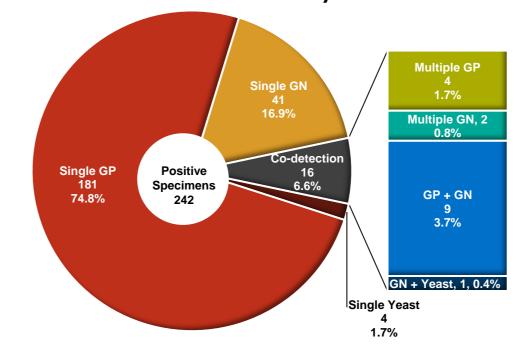
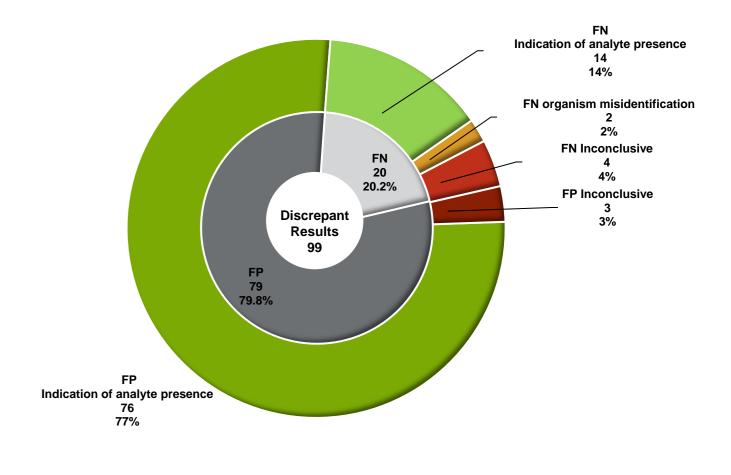



Table 4. BioFire BJI Panel Performance

Analyte	TP/	%	95% CI	TN/	%	95% CI					
Gram Positive Bacteria											
Anaerococcus prevotii/vaginalis	1/1	100	-	1543/1543	100	99.8-100%					
Clostridium perfringens	0/0	-	_	1544/1544	100	99.8-100%					
Cutibacterium avidum/granulosum	0/0	-	_	1544/1544	100	99.8-100%					
Enterococcus faecalis	10/10	100	72.2-100%	1529/1534	99.7	99.2-99.9%					
Enterococcus faecium	1/1	100	-	1541/1543	99.9	99.5-100%					
Finegoldia magna	3/3	100	43.9-100%	1540/1541	99.9	99.6-100%					
Parvimonas micra	0/1	0	-	1543/1543	100	99.8-100%					
Peptoniphilus	1/1	100	-	1542/1543	99.9	99.6-100%					
Peptostreptococcus anaerobius	0/0	-	-	1541/1544	99.8	99.4-99.9%					
Staphylococcus aureus	98/105	93.3	86.9-96.7%	1417/1439	98.5	97.7-99.0%					
Staphylococcus lugdunensis	2/2	100	34.2-100%	1539/1542	99.8	99.4-99.9%					
Streptococcus spp.	38/44	86.4	73.3-93.6%	1488/1500	99.2	98.6-99.5%					
Streptococcus agalactiae	10/11	90.9	62.3-98.4%	1532/1533	99.9	99.6-100%					
Streptococcus pneumoniae	3/3	100	43.9-100%	1541/1541	100	99.8-100%					
Streptococcus pyogenes	11/12	91.7	64.6-98.5%	1532/1532	100	99.7-100%					
		Gram Neg	ative Bacteria								
Bacteroides fragilis	0/0	-	-	1543/1544	99.9	99.6-100%					
Citrobacter	2/2	100	34.2-100%	1542/1542	100	99.8-100%					
Enterobacter cloacae complex	2/4	50.0	15.0-85.0%	1538/1540	99.9	99.5-100%					
Escherichia coli	14/14	100	78.5-100%	1529/1530	99.9	99.6-100%					
Haemophilus influenzae	1/1	100	-	1542/1543	99.9	99.6-100%					
Kingella kingae	1/1	100	-	1537/1543	99.6	99.2-99.8%					
Klebsiella aerogenes	0/0	-	-	1544/1544	100	99.8-100%					
Klebsiella pneumoniae group	4/5	80.0	37.6-96.4%	1538/1539	99.9	99.6-100%					
Morganella morganii	1/1	100	-	1541/1543	99.9	99.5-100%					
Neisseria gonorrhoeae	2/2	100	34.2-100%	1539/1542	99.8	99.4-99.9%					
Proteus spp.	4/4	100	51.0-100%	1536/1540	99.7	99.3-99.9%					
Pseudomonas aeruginosa	2/2	100	34.2-100%	1539/1542	99.8	99.4-99.9%					
Salmonella spp.	0/0	-	-	1544/1544	100	99.8-100%					
Serratia marcescens	2/2	100	34.2-100%	1541/1542	99.9	99.6-100%					
Yeast											
Candida	4/7	57.1	25.0-84.2%	1536/1537	99.9	99.6-100%					
Candida albicans	3/5	60.0	23.1-88.2%	1539/1539	100	99.8-100%					
		microbial	Resistance Gene	S							
CTX-M	5/5	100	56.6-100%	33/33	100	89.6-100%					
IMP	0/0	-	-	38/38	100	90.8-100%					
KPC	0/0	-	-	40/40	100	91.2-100%					
mecA/C and MREJ (MRSA)	19/19	100	83.2-100%	90/94	95.7	89.6-98.3%					
NDM	0/0	-	-	40/40	100	91.2-100%					
OXA-48-like	1/1	100	-	33/33	100	89.6-100%					
vanA/B	3/3	100	43.9-100%	14/14	100	78.5-100%					
VIM	0/0	-	-	38/38	100	90.8-100%					

Figure 5. Discrepancy Investigation Results

