Multivariate Regression Analysis to Determine Independent Predictors of Treatment Outcomes in the RESTORE-IMI 2 Trial

Background

- Hospital-acquired/ventilator-associated bacterial pneumonia (HABP/VABP) account for up to 26% of hospital-acquired infections, with mortality rates of up to 50%¹⁻³
- In the RESTORE-IMI 2 clinical trial, imipenem/cilastatin/relebactam (IMI/REL) was found to be noninferior to piperacillin/ tazobactam (PIP/TAZ) for treating adults with HABP/VABP, in both the primary and key secondary end points⁴ - The primary end point of this study was Day 28 all-cause mortality (ACM) and the key secondary end point was clinical response at early follow-up (EFU; 7–14 days after end of therapy)⁴
- IMI/REL was recently approved for HABP/VABP by the United States Food & Drug Administration⁵
- We conducted this post hoc analysis to determine independent predictors of efficacy outcomes in the RESTORE-IMI 2 study using a multivariate regression analysis

Methods

- RESTORE-IMI 2 was a multicenter, randomized, controlled, double-blind, phase 3 noninferiority study that compared IMI/REL (500 mg/500 mg/250 mg) vs PIP/TAZ (4 g/500 mg), administered as 30-minute intravenous infusions every 6 hours for 7–14 days, in adult participants with HABP/VABP⁴
- Using participant-level data from 531 participants in this study, a stepwise-selection logistic regression model was developed and used to conduct an exploratory analysis of independent predictors of Day 28 ACM and favorable clinical response at EFU in the modified intention-to-treat (MITT) population
- The MITT population included all randomized participants who received ≥1 dose of study drug - Participants with only gram-positive cocci in their baseline respiratory specimen were excluded
- Baseline categorical variables (n=19) were preselected as candidates for inclusion based on clinical relevance (Table 1)

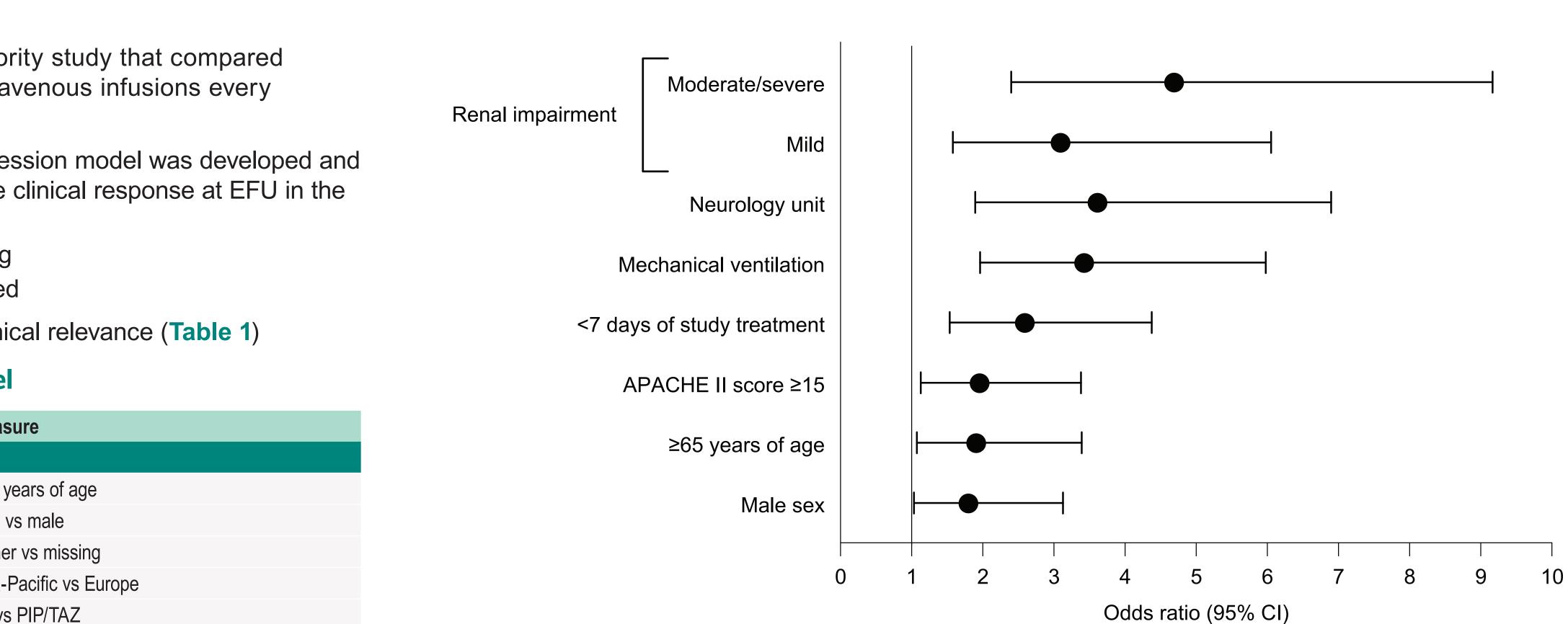
Table 1. Candidate Baseline Variables Preselected for Inclusion in Logistic Regression Model

Predictive variable	Measure
Baseline demographics	
Participant age	<65 vs ≥65 years of a
Participant sex	Female vs male
Participant race	White vs other vs miss
Region of enrollment	Americas vs Asia-Pacific vs
Treatment arm	IMI/REL vs PIP/TAZ
Disease characteristics	
Type of pneumonia	Nonventilated HABP vs ventilated
APACHE II score	<15 vs ≥15
CPIS	≤5 vs ≥6
Hospital service unit	Neurology vs other
ICU	Yes vs no
Concurrent bacteremia with any pathogen	Yes vs no
Number of LRT pathogens	Monomicrobial vs polymic
Renal impairment	None ^a vs mild ^b vs moderate
Renal function	Augmented renal clearance ^d vs norr
Treatment duration	≥7 vs <7 days
Pathogens	
Klebsiella pneumoniae	Present vs not detected
Pseudomonas aeruginosa	Present vs not detected

Escherichia coli

Acinetobacter calcoaceticus-baumannii complex

^aCrCl ≥90 mL/min; ^bCrCl ≥60 to <90 mL/min; ^cCrCl ≥15 to <60 mL/min; ^dCrCl ≥150 mL/min; ^eCrCl ≥90 to <150 mL/min; ^fCrCl ≥15 to <90 mL/min. APACHE, Acute Physiology and Chronic Health Evaluation; CPIS, clinical pulmonary infection score; CrCl, creatinine clearance; HABP, hospital-acquired bacterial pneumonia; ICU, intensive care unit; IMI/REL, imipenem/cilastatin/relebactam; LRT, lower respiratory tract; PIP/TAZ, piperacillin/tazobactam; VABP, ventilator-associated bacterial pneumonia.

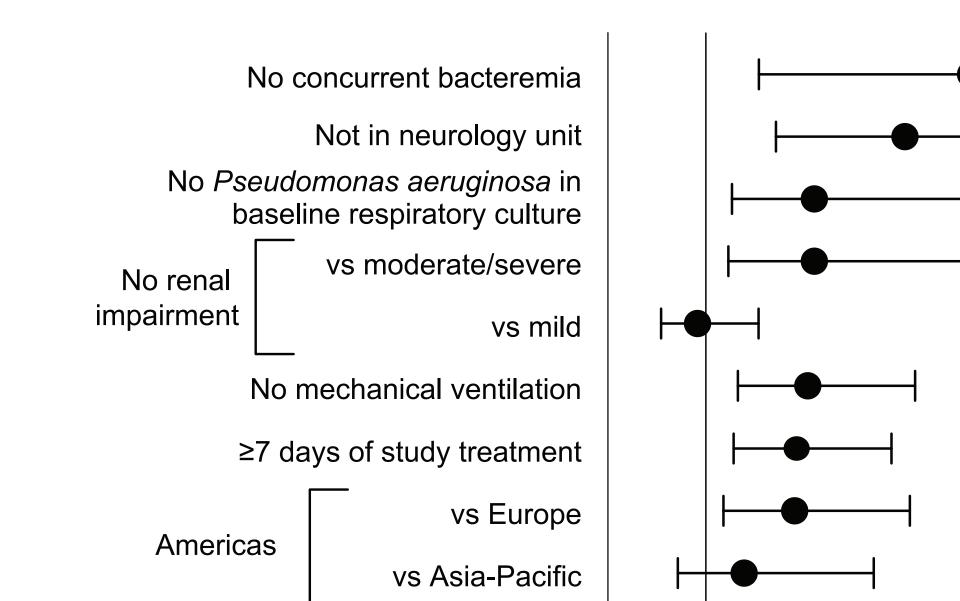

- All candidate variables had either 2 or 3 levels and had complete data except for the baseline pathogen variable; a baseline lower respiratory tract (LRT) specimen was available for 433 of the 531 participants
- The variable for the number of baseline LRT pathogens included 2 levels: monomicrobial vs polymicrobial - The variable for specific pathogens also included 2 levels: present vs absent
- Variables were added to the model if significant (P<.05) and removed if their significance was reduced (P>.1) by the addition of other variables
- Two-factor interactions between treatment allocation and significant predictors were assessed for significance (P<.05)

Results

Predictors of Day 28 ACM

- Baseline variables that met the criteria for significant independent predictors of increased Day 28 ACM in the final selected regression model are shown in Figure 1
- Renal impairment, treatment in a neurology hospital service unit, mechanical ventilation, <7 days on study treatment, Acute predictors of higher Day 28 ACM
- (214/462)] and a higher incidence of bacteremia (13% [9/69] vs 5%; [22/462], respectively)

Figure 1. Independent Predictors of Greater Day 28 All-Cause Mortality (MITT population; N=531)


-Pacific vs Europe

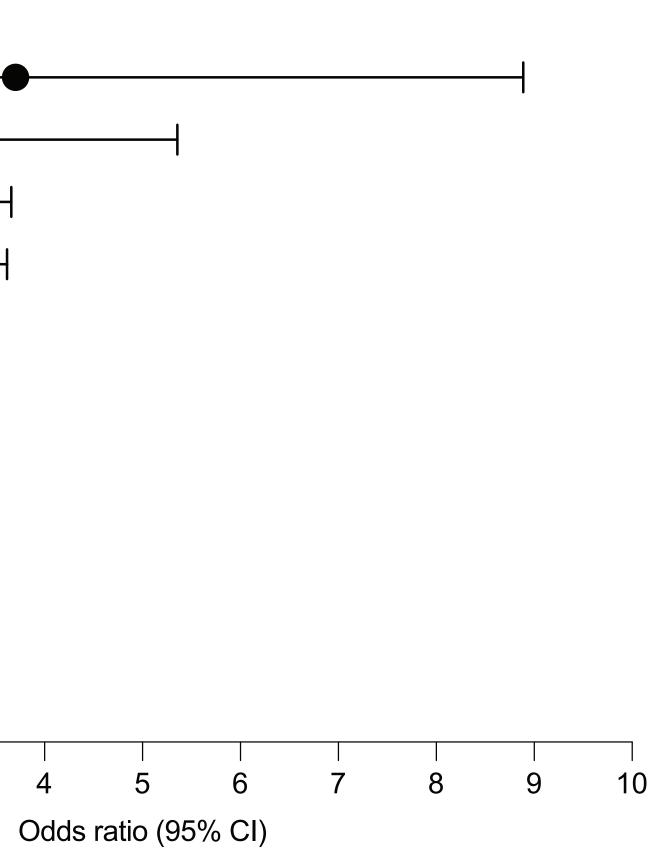
- s PIP/TAZ
- ventilated HABP/VABP
- ≥15
- vs other
- /s no
- s no vs polymicrobial
- moderate/severec
- ce^d vs normal^e vs impaired^f
- ⁷ days
- not detected not detected Present vs not detected
- Present vs not detected

APACHE, Acute Physiology and Chronic Health Evaluation; EFU, early follow-up; MITT, modified intention-to-treat. Note: Variables, as listed, are predictive of having a favorable clinical response at EFU, ie, participants without concurrent bacteremia were more likely to have a favorable clinical response at EFU than participants with bacteremia.

<65 years of age

APACHE II score <15

APACHE, Acute Physiology and Chronic Health Evaluation; MITT, modified intention-to-treat.


Robert Tipping; Jiejun Du; Maria C. Losada; Michelle L. Brown; Katherine Young; Joan R. Butterton; Amanda Paschke; Luke F. Chen

Merck & Co., Inc., Kenilworth, NJ, USA

Physiology and Chronic Health Evaluation (APACHE II) score ≥15, age ≥65 years, and male sex were significant independent

– Participants treated in neurology units versus other units had greater disease severity (APACHE II scores ≥15 [55% (38/69) vs 46%)

Figure 2. Independent Predictors of a Favorable Clinical Response at EFU (MITT population; N=531)

Predictors of Favorable Clinical Response at EFU

- regression model are shown in Figure 2

Interactions Among Treatment Allocation and Predictors of Day 28 ACM and Favorable Clinical Response at EFU Treatment allocation, ie, randomization to IMI/REL or PIP/TAZ, was not a significant predictor of Day 28 ACM or clinical response

- at EFU
- response at EFU

Conclusions

- ventilation and high APACHE II score^{3,6-8}

- treatment or HABP/VABP
- at EFU)

Disclosures

- by MSD

References

- 1. Kalil AC, et al. *Clin Infect Dis.* 2016;63(5):e61–e111.
- 2. Magill SS, et al. *N Engl J Med.* 2014;370(13):1198–1208.
- 3. Talbot GH, et al. *J Infect Dis.* 2019;219(10):1536–1544.
- 4. Titov I, et al. Clin Infect Dis. 2020;ciaa803.
- Corp., Whitehouse Station, NJ, USA. 2020.
- 6. Brotfain E, et al. J Intensive Care Med. 2017;32(9):528–534.
- 7. Kumar S, et al. *Lung.* 2018;196(4):469–479.
- 8. Napolitano LM. Clin Infect Dis. 2010;51(suppl 1):S67–S80.

Acknowledgments

We thank the study participants, investigators, and trial-site personnel for their contributions to the study.

Odds ratio (95% Cl)

4.69 (2.40, 9.17) 3.09 (1.58, 6.06) 3.62 (1.89, 6.90) 3.43 (1.96, 5.98) 2.59 (1.54, 4.38) 1.96 (1.13, 3.38) 1.91 (1.07, 3.39) 1.80 (1.04, 3.13)

Odds ratio (95% CI)

3.74 (1.54, 8.89)

3.04 (1.72, 5.36)

2.11 (1.27, 3.66)

2.11 (1.23, 3.62)

0.92 (0.55, 1.54)

2.04 (1.33, 3.14)

1.93 (1.28, 2.90)

1.91 (1.18, 3.09)

1.39 (0.72, 2.72)

1.59 (1.01, 2.51)

1.42 (0.94, 2.15)

• Baseline variables that met the criteria for significant independent predictors of clinical response at EFU in the final selected

- Predictive variables for favorable clinical response at EFU included absence of bacteremia, treatment outside of a neurology unit, lack of *Pseudomonas aeruginosa* in baseline respiratory cultures, no renal impairment (vs moderate/severe), no mechanical ventilation, enrollment in the Americas vs Europe, and age <65 years

• There were no significant interactions between treatment allocation and independent predictors of Day 28 ACM or clinical

• This analysis validated known independent predictors of clinical outcomes in HABP/VABP, including mechanical

In critically ill (APACHE II score ≥15) participants with HABP/VABP enrolled in RESTORE-IMI 2, IMI/REL has demonstrated efficacy in reducing Day 28 ACM compared with PIP/TAZ⁹

• The presence of *P. aeruginosa* at baseline as a causative pathogen of HABP/VABP was associated with lower rates of clinical response regardless of assigned treatment arm, ie, IMI/REL or PIP/TAZ

• Randomized treatment allocation was not a significant predictor of Day 28 ACM or clinical response at EFU, which was not unexpected since RESTORE-IMI 2 demonstrated that IMI/REL was noninferior to PIP/TAZ for the

• Since there were no interactions between predictors of primary and key secondary efficacy outcomes and treatment arm, this analysis supports the main noninferiority finding of RESTORE-IMI 2

• Participant- and disease-related factors (ie. age ≥65 years, mechanical ventilation, APACHE II score ≥15, and renal impairment) emerged as consistent independent predictors of poor outcome (ACM and clinical response

• Funding for this research was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA (MSD). • Medical writing assistance was provided by Susan DeRocco, PhD, of The Lockwood Group, Stamford, CT. This assistance was funded

5. RECARBRIO[™] (imipenem/cilastatin and relebactam) for injection, for intravenous use. Prescribing information. Merck Sharp & Dohme

9. Chen LF, et al. Abstract presented at: IDWeek 2020; (Oct 21-22); Philadelphia, PA.

Copies of this presentation obtaine through QR (Quick Response) codes are for personal use only and may not be reproduced with permission of the authors.

https://bit.ly/34dRLcn